首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   14篇
  201篇
  2023年   1篇
  2022年   5篇
  2021年   8篇
  2020年   3篇
  2019年   6篇
  2018年   7篇
  2017年   3篇
  2016年   6篇
  2015年   9篇
  2014年   18篇
  2013年   19篇
  2012年   13篇
  2011年   21篇
  2010年   3篇
  2009年   7篇
  2008年   12篇
  2007年   8篇
  2006年   1篇
  2005年   9篇
  2004年   7篇
  2003年   2篇
  2002年   2篇
  2000年   3篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1992年   5篇
  1991年   3篇
  1990年   4篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1977年   1篇
  1974年   2篇
  1972年   1篇
  1971年   2篇
排序方式: 共有201条查询结果,搜索用时 0 毫秒
1.
2.
3.
Dry leaf powder of A. paniculata, when fed orally to male albino rats, at a dose level of 20 mg powder per day for 60 days, resulted in cessation of spermatogenesis, degenerative changes in the seminiferous tubules, regression of Leydig cells and regressive and/or degenerative changes in the epididymis, seminal vesicle, ventral prostate and coagulating gland. There was reduction in the weight and fluid content of the accessory glands. The treatment also resulted in accumulation of glycogen and cholesterol in the testis, and increased activities of lactate dehydrogenase in testis and alkaline phosphatase in testis and ventral prostate. The results suggest antispermatogenic and/or antiandrogenic effect of the plant.  相似文献   
4.
Field pea (Pisum sativum), a major grain legume crop, is autogamous and adapted to temperate climates. The objectives of this study were to investigate effects of high temperature stress on stamen chemical composition, anther dehiscence, pollen viability, pollen interactions with pistil and ovules, and ovule growth and viability. Two cultivars (“CDC Golden” and “CDC Sage”) were exposed to 24/18°C (day/night) continually or to 35/18°C for 4 or 7 days. Heat stress altered stamen chemical composition, with lipid composition of “CDC Sage” being more stable compared with “CDC Golden.” Heat stress reduced pollen viability and the proportion of ovules that received a pollen tube. After 4 days at 35°C, pollen viability in flower buds decreased in “CDC Golden,” but not in “CDC Sage.” After 7 days, partial to full failure of anthers to dehisce resulted in subnormal pollen loads on stigmas. Although growth (ovule size) of fertilized ovules was stimulated by 35°C, heat stress tended to decrease ovule viability. Pollen appears susceptible to stress, but not many grains are needed for successful fertilization. Ovule fertilization and embryos are less susceptible to heat, but further research is warranted to link the exact degree of resilience to stress intensity.  相似文献   
5.
6.
Previously we showed that Protein kinase A (PKA) activated in hypoxia and myocardial ischemia/reperfusion mediates phosphorylation of subunits I, IVi1 and Vb of cytochrome c oxidase. However, the mechanism of activation of the kinase under hypoxia remains unclear. It is also unclear if hypoxic stress activated PKA is different from the cAMP dependent mitochondrial PKA activity reported under normal physiological conditions. In this study using RAW 264.7 macrophages and in vitro perfused mouse heart system we investigated the nature of PKA activated under hypoxia. Limited protease treatment and digitonin fractionation of intact mitochondria suggests that higher mitochondrial PKA activity under hypoxia is mainly due to increased sequestration of PKA Catalytic α (PKAα) subunit in the mitochondrial matrix compartment. The increase in PKA activity is independent of mitochondrial cAMP and is not inhibited by adenylate cyclase inhibitor, KH7. Instead, activation of hypoxia-induced PKA is dependent on reactive oxygen species (ROS). H89, an inhibitor of PKA activity and the antioxidant Mito-CP prevented loss of CcO activity in macrophages under hypoxia and in mouse heart under ischemia/reperfusion injury. Substitution of wild type subunit Vb of CcO with phosphorylation resistant S40A mutant subunit attenuated the loss of CcO activity and reduced ROS production. These results provide a compelling evidence for hypoxia induced phosphorylation as a signal for CcO dysfunction. The results also describe a novel mechanism of mitochondrial PKA activation which is independent of mitochondrial cAMP, but responsive to ROS.  相似文献   
7.
Srinivasan R  Li J  Ng SL  Kalesh KA  Yao SQ 《Nature protocols》2007,2(11):2655-2664
This protocol describes the step-by-step procedures for the efficient assembly of bidentate inhibitor libraries of a target enzyme, using the so-called 'click chemistry' between an alkyne-bearing core group and an azide-modified peripheral group, followed by direct biological screening for the identification of potential 'hits'. The reaction is highlighted by its modularity, high efficiency (approximately 100% yield in most cases) and tolerance toward many functional groups present in the fragments, as well as biocompatibility (typically carried out in aqueous conditions with small amounts of biocompatible catalysts). The approach consists of three steps: (i) chemical synthesis of alkyne-bearing protein tyrosine phosphatase or matrix metalloprotease core groups and diverse azide-modified peripheral groups; (ii) click chemistry to assemble the bidentate inhibitor libraries; and (iii) direct screening of the libraries with target enzymes using 384-well microplate assays. Following the chemical synthesis of the core and peripheral groups and optimization of the click chemistry conditions (approximately 1 week), steps (ii) and (iii) take 3 d to complete (approximately 1-2 d for library assembly and 1 d for inhibitor screening).  相似文献   
8.
Adenosine monophosphate deaminase (AMPD; EC 3.5.4.6) catalyses the hydrolysis of adenosine monophosphate (AMP) to commensurate amounts of inosine monophosphate (IMP) and ammonia. The production of AMP deaminase in Candida albicans was measured in Lee's medium grown cultures. The highest AMPD activity was observed at 24 h of growth. The enzyme had an optimum pH and temperature at 6-7 and 28 degrees C, respectively. This enzyme was inhibited under iron-limited growth conditions as well as by protease inhibitors. The AMPD of C. albicans showed a moderate increase in activity when cultures were grown in the presence of the divalent cations Mg2+, Ca2+, and Zn2+. Moreover, ADP, ATP, adenine, adenosine, deoxyribose and hypoxanthine increased the enzyme activity. Cultures grown in trypticase soy broth exhibited maximum AMPD activity compared with those grown in Sabouraud dextrose broth or Lee's medium.  相似文献   
9.
Macroautophagy/autophagy defects have been identified as critical factors underlying the pathogenesis of neurodegenerative diseases. The roles of the bioactive signaling lipid sphingosine-1-phosphate (S1P) and its catabolic enzyme SGPL1/SPL (sphingosine phosphate lyase 1) in autophagy are increasingly recognized. Here we provide in vitro and in vivo evidence for a previously unidentified route through which SGPL1 modulates autophagy in neurons. SGPL1 cleaves S1P into ethanolamine phosphate, which is directed toward the synthesis of phosphatidylethanolamine (PE) that anchors LC3-I to phagophore membranes in the form of LC3-II. In the brains of SGPL1fl/fl/Nes mice with developmental neural specific SGPL1 ablation, we observed significantly reduced PE levels. Accordingly, alterations in basal and stimulated autophagy involving decreased conversion of LC3-I to LC3-II and increased BECN1/Beclin-1 and SQSTM1/p62 levels were apparent. Alterations were also noticed in downstream events of the autophagic-lysosomal pathway such as increased levels of lysosomal markers and aggregate-prone proteins such as APP (amyloid β [A4] precursor protein) and SNCA/α-synuclein. In vivo profound deficits in cognitive skills were observed. Genetic and pharmacological inhibition of SGPL1 in cultured neurons promoted these alterations, whereas addition of PE was sufficient to restore LC3-I to LC3-II conversion, and control levels of SQSTM1, APP and SNCA. Electron and immunofluorescence microscopy showed accumulation of unclosed phagophore-like structures, reduction of autolysosomes and altered distribution of LC3 in SGPL1fl/fl/Nes brains. Experiments using EGFP-mRFP-LC3 provided further support for blockage of the autophagic flux at initiation stages upon SGPL1 deficiency due to PE paucity. These results emphasize a formerly overlooked direct role of SGPL1 in neuronal autophagy and assume significance in the context that autophagy modulators hold an enormous therapeutic potential in the treatment of neurodegenerative diseases.  相似文献   
10.
Microbial biofilms contribute to biofouling in a wide range of processes from medical implants to processed food. The extracellular polymeric substances (EPS) are implicated in imparting biofilms with structural stability and resistance to cleaning products. Still, very little is known about the structural role of the EPS in Gram-positive systems. Here, we have compared the cell surface and EPS of surface-attached (biofilm) and free-floating (planktonic) cells of Bacillus cereus, an organism routinely isolated from within biofilms on different surfaces. Our results indicate that the surface properties of cells change during biofilm formation and that the EPS proteins function as non-specific adhesions during biofilm formation. The physicochemical traits of the cell surface and the EPS proteins give us an insight into the forces that drive biofilm formation and maintenance in B. cereus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号