首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   407篇
  免费   16篇
  423篇
  2023年   2篇
  2022年   10篇
  2021年   22篇
  2020年   10篇
  2019年   11篇
  2018年   16篇
  2017年   9篇
  2016年   12篇
  2015年   23篇
  2014年   19篇
  2013年   22篇
  2012年   38篇
  2011年   29篇
  2010年   30篇
  2009年   12篇
  2008年   31篇
  2007年   25篇
  2006年   22篇
  2005年   19篇
  2004年   16篇
  2003年   16篇
  2002年   12篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1994年   2篇
  1992年   1篇
  1990年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有423条查询结果,搜索用时 0 毫秒
1.
Enhancement of NMDA-mediated responses by cyanide   总被引:2,自引:0,他引:2  
The effect of cyanide on NMDA-activated ion current and MK801 binding was studied in cultured rat hippocampal neurons. In microfluorometric analysis using fura-2, removal of extracellular Mg2+ resulted in a five-fold increase in NMDA-induced peak of [Ca2+]i. One mM NaCN enhanced the peak NMDA responses in the presence, but not in the absence of extracellular Mg2+. Cyanide enhanced the immediate rise in [Ca2+]i produced by NMDA, followed over a 1–5 min period by a gradual increase of [Ca2+]i. Similar results were obtained in whole-cell patch clamp recordings from hippocampal neurons. One mM KCN enhanced the NMDA-activated current in the presence, but not in the absence of extracellular Mg2+. This effect was independent of cyanide-mediated metabolic inhibition since the recording pipette contained ATP (2 mM). In binding assays NaCN (1 mM) increased the binding affinity of [3H]MK-801 to rat forebrain membranes in the presence of Mg2+, whereas in the absence of Mg2+, NaCN did not influence binding. These results indicate that cyanide enhances NMDA-mediated Ca2+ influx and inward current by interacting with the Mg2+ block of the NMDA receptor. The effect of cyanide can be explained by an initial interaction with the Mg2+ block of the NMDA receptor/ionophore which appears to be energy-independent, followed by a gradual increase in Ca2+ influx resulting from cellular energy reserve depletion.Abbreviations NMDA N-Methyl-D-Aspartate - EAA excitatory amino acid - MK-801 (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d] cyclohept-5,10-imine maleate  相似文献   
2.
The oxidative dealkylation of 2,4,6-tri-tert-butylphenol (TTBP) has been investigated using molecular oxygen and [Cu(NO3(GBHA)](NO3) as catalyst, where GBHA is N,N′-bis((benzimidazol-2-yl)methyl)hexanediamide [(a) M. Gupta, P. Mathur, R.J. Butcher, Inorg. Chem. 40 (2001) 878; (b) M. Gupta, S.K. Das, P. Mathur, A.W. Cordes, Inorg. Chim. Acta 353 (2003) 197; (c) S. Tehlan, M.S. Hundal, P. Mathur, Inorg. Chem. 43 (2004) 6589; (d) F. Afreen, P. Mathur, A. Rheingold, Inorg. Chim. Acta 358 (2005) 1125.]. X-ray structural characterization of complex [Cu(NO3)(GBHA)](NO3) · CH3OH confirms that the Cu (II) ion is in a distorted square pyramidal geometry (τ = 0.168). The TTBP oxidation reaction proceeds via tri-tert-butylphenoxyl radical producing two products 2,6-di-tert-butyl-1,4-benzoquinone (A) and 4,6-di-tert-butyl-1,2-benzoquinone (B). Both A and B have been well characterized by 1H NMR, 13C NMR, UV-Vis and mass data.  相似文献   
3.
Abstract: The objective of this study was to determine whether free radicals play a pathogenic role in neuronal apoptosis. The ability of Mn(III) tetrakis(benzoic acid) porphyrin (MnTBAP), a superoxide dismutase mimic, to inhibit staurosporine-induced neuronal apoptosis was tested in mixed cerebrocortical cultures. Staurosporine produced concentration-dependent cell death that was markedly inhibited by MnTBAP. Immunocytochemical analyses of cultures for neuron- and astrocyte-specific markers revealed that high concentrations of staurosporine induced the death of both neurons and astrocytes; both cell types were protected by MnTBAP. A less active congener of MnTBAP failed to protect cells against staurosporine-induced apoptosis. MnTBAP also protected cortical cultures against ceramide-induced apoptosis. These results support a role for oxidative stress in neuronal apoptosis.  相似文献   
4.
Staphylococcus aureus is a major human pathogen and emergence of antibiotic resistance in clinical staphylococcal isolates raises concerns about our ability to control these infections. Cell wall-active antibiotics cause elevated synthesis of methionine sulfoxide reductases (Msrs: MsrA1 and MsrB) in S. aureus. MsrA and MsrB enzymes reduce S-epimers and R-epimers of methionine sulfoxide, respectively, that are generated under oxidative stress. In the S. aureus chromosome, there are three msrA genes (msrA1, msrA2 and msrA3) and one msrB gene. To understand the precise physiological roles of Msr proteins in S. aureus, mutations in msrA1, msrA2 and msrA3 and msrB genes were created by site-directed mutagenesis. These mutants were combined to create a triple msrA (msrA1, msrA2 and msrA3) and a quadruple msrAB (msrA1, msrA2, msrA3, msrB) mutant. These mutants were used to determine the roles of Msr proteins in staphylococcal growth, antibiotic resistance, adherence to human lung epithelial cells, pigment production, and survival in mice relative to the wild-type strains. MsrA1-deficient strains were sensitive to oxidative stress conditions, less pigmented and less adherent to human lung epithelial cells, and showed reduced survival in mouse tissues. In contrast, MsrB-deficient strains were resistant to oxidants and were highly pigmented. Lack of MsrA2 and MsrA3 caused no apparent growth defect in S. aureus. In complementation experiments with the triple and quadruple mutants, it was MsrA1 and not MsrB that was determined to be critical for adherence and phagocytic resistance of S. aureus. Overall, the data suggests that MsrA1 may be an important virulence factor and MsrB probably plays a balancing act to counter the effect of MsrA1 in S. aureus.  相似文献   
5.
Replication-defective recombinant adenoviruses (RAds) were constructed that synthesized the pre-membrane and envelope (E) proteins of Japanese encephalitis virus (JEV). Recombinant virus RAdEa synthesized Ea, the membrane-anchored E protein, and RAdEs synthesized Es, the secretory E protein. Compared with RAdEs, RAdEa replicated poorly in HEK 293A cells and synthesized lower amounts of E protein. Oral immunization of mice with RAds generated low titers of anti-JEV antibodies that had little JEV neutralizing activity. Intra-muscular (IM) immunization of mice with either RAd generated high titers of anti-JEV antibodies. Interestingly, RAdEa induced only low titers of JEV neutralizing antibodies. Titers were significantly higher in case of RAdEs immunization. Splenocytes from mice immunized IM with RAds secreted large amounts of interferon-γ and moderate amounts of interleukin-5 in the presence of JEV and showed cytotoxic activity against JEV-infected cells. Naïve mice immunized IM with RAdEs showed complete protection against a lethal dose of JEV given intra-cerebrally. In order to study the effect of the pre-existing adenovirus 5 (Ad5) immunity on the outcome of the RAdEs immunization, mice were exposed to Ad5 through IM or intra-nasal (IN) routes before immunization with RAdEs. Mice exposed to Ad5 through the IN route, when immunized with RAdEs given IM, or those exposed to Ad5 through the IM route, when immunized with RAdEs given IN, were completely protected against lethal JEV challenge.  相似文献   
6.
A series of 3-chloro-4-substituted-1-(8-hydroxy-quinolin-5-yl)-azetidin-2-ones were synthesized and evaluated for their in vitro anti-filarial activity. To pre-assess the anti-filarial behavior of synthesized compounds (Vaf) on a structural basis, automated docking studies were carried out with Molecular Design Suite (MDS v 3.5) into the active site of glutathione-S-transferase (GST) enzyme; scoring functions of these compounds at the active site of the GST enzyme were used for correlation with observed activity. Compounds Ve and Vf have shown good affinity for receptor GST, as well as in vitro anti-filarial potency.  相似文献   
7.

The milieu of male germline stem cells (mGSCs) is characterized as a low-oxygen (O2) environment, whereas, their in-vitro expansion is typically performed under normoxia (20–21% O2). The comparative information about the effects of low and normal O2 levels on the growth and differentiation of caprine mGSCs (cmGSCs) is lacking. Thus, we aimed to investigate the functional and multilineage differentiation characteristics of enriched cmGSCs, when grown under hypoxia and normoxia. After enrichment of cmGSCs through multiple methods (differential platting and Percoll-density gradient centrifugation), the growth characteristics of cells [population-doubling time (PDT), viability, proliferation, and senescence], and expression of key-markers of adhesion (β-integrin and E-Cadherin) and stemness (OCT-4, THY-1 and UCHL-1) were evaluated under hypoxia (5% O2) and normoxia (21% O2). Furthermore, the extent of multilineage differentiation (neurogenic, adipogenic, and chondrogenic differentiation) under different culture conditions was assessed. The survival, viability, and proliferation were significantly (p?<?0.05) improved, thus, yielding a significantly (p?<?0.05) higher number of viable cells with larger colonies under hypoxia. Furthermore, the expression of stemness and adhesion markers were distinctly upregulated under lowered O2 conditions. Conversely, the differentiated regions and expression of differentiation-specific genes [C/EBPα (adipogenic), nestin and β-tubulin (neurogenic), and COL2A1 (chondrogenic)] were significantly (p?<?0.05) reduced under hypoxia. Overall, the results demonstrate that culturing cmGSCs under hypoxia augments the growth characteristics and stemness but not the multilineage differentiation of cmGSCs, as compared with normoxia. These data are important to develop robust methodologies for ex-vivo expansion and lineage-committed differentiation of cmGSCs for clinical applications.

  相似文献   
8.
Archives of Microbiology - Biofilms are structured microbial communities of single or multiple populations in which microbial cells adhere to a surface and get embedded in extracellular polymeric...  相似文献   
9.
10.
Two series of new benzoxazepines substituted with different alkyl amino ethyl chains were synthesized comprising synthetic steps of inter and intramolecular Mitsunobu reaction, lithium aluminium hydride (LAH) reduction, debenzylation, bimolecular nucleophilic substitution (SN2) reaction. The present study investigates the effect of a tyrosine-based benzoxazepine derivative in human breast cancer cells MCF-7 and MDA-MB-231 and in breast cancer animal model. The anti-proliferative effect of 15a on MCF-7 cells was associated with G1 cell-cycle arrest. This G1 growth arrest was followed by apoptosis as 15a dose dependently increased phosphatidylserine exposure, PARP cleavage and DNA fragmentation that are hallmarks of apoptotic cell death. Interestingly, 15a activated components of both intrinsic and extrinsic pathways of apoptosis characterized by activation of caspase-8 and -9, mitochondrial membrane depolarization and increase in Bax/Bcl2 ratio. However, use of selective caspase inhibitors revealed that the caspase-8-dependent pathway is the major contributor to 15a-induced apoptosis. Compound 15a also significantly reduced the growth of MCF-7 xenograft tumors in athymic nude mice. Together, 15a could serve as a base for the development of a new group of effective breast cancer therapeutics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号