首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2008年   1篇
  2005年   1篇
  2000年   1篇
  1995年   1篇
  1993年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
The interaction of HCl with calf thymus DNA was investigated in aqueous solution at pH 7-2 with H+/DNA(P)(P:phosphate) molar ratios (r) of 1/80, 1/40, 1/20, 1/10, 1/4, 1/2, and 1, using Fourier Transform (FTIR) difference spectroscopy. Correlations between spectral changes, proton binding mode, DNA denaturation, and conformational variations are established. A comparison was also made between their spectra of denaturated DNA, in the presence of proton and Cu ions with similar cation concentrations. The FTIR difference spectroscopic results have shown that at low proton concentrations of r = 1/80 and 1/40 (pH 7–5), no major spectral changes occur for DNA, and the presence of H+ results in an increased base-stacking interaction and helical stability. At higher proton concentrations of r > 1/40, the proton binding to the cytosine and adenine bases begins with major destabilization of the helical duplex. As base protonation progresses, a B to C conformational conversion occurs with major DNA spectral changes. Protonation of guanine bases occurs at a high cation concentration r > 1/2 (pH < 3) with a major increase in the intensity of several DNA in-plane vibrations. Copper ion complexation with DNA exhibits marked similarities with proton at high cation concentrations (r > 1/10), whereas at low metal ion concentrations, copper–PO2 and copper–guanine N-7 bindings are predominant. No major DNA conformational transition was observed on copper ion complexation. © 1995 John Wiley & Sons, Inc.  相似文献   
2.
The interaction of calf thymus DNA with Cu2+and Pb2+ was studied in aqueous solution at pH 6.5 with metal/DNA (P) (P = phosphate) molar ratios (r) 1/80, 1/40, 1/20, 1/10, 1/4, 1/2, and 1, using Fourier Transform ir (FTIR) spectroscopy. Correlations between the ir spectral changes, metal ion binding mode, DNA condensation, and denaturation, as well as conformational features, were established. Spectroscopic evidence has shown that at low metal/DNA (P) molar rations 1/80 and 1/40, copper and lead ions bind mainly to the PO of the backbone, resulting in increased base-stacking interaction and duplex stability. The major copper ion base binding via G-C base pairs begins at r > 1/40, while the lead ion base binding occurs at r > 1/20 with the A-T base pairs. The denaturation of DNA begins at r = 1/10 and continues up to r = 1/2 in the presence of copper ions, whereas a partial destabilization of the helical structure was observed for the lead ion at high metal ion concentration (r = 1/2). Metal-DNA binding also results in DNA condensation. No major departure from the B-family structure was observed, upon DNA interaction with these metal ions. © 1993 John Wiley & Sons, Inc.  相似文献   
3.
The involvement of the Fe cations in autoxidation in cells and tissues is well documented. DNA is a major target in such reaction, and can chelate Fe cation in many ways. The present study was designed to examine the interaction of calf-thymus DNA with Fe(II) and Fe(III), in aqueous solution at pH 6.5 with cation/DNA (P) (P = phosphate) molar ratios (r) of 1:160 to 1:2. Capillary electrophoresis and Fourier transform infrared (FTIR) difference spectroscopic methods were used to determine the cation binding site, the binding constant, helix stability and DNA conformation in Fe-DNA complexes. Structural analysis showed that at low cation concentration (r = 1/80 and 1/40), Fe(II) binds DNA through guanine N-7 and the backbone PO(2) group with specific binding constants of K(G) = 5.40 x 10(4) M(1) and K(P) = 2.40 x 10(4) M(1). At higher cation content, Fe(II) bindings to adenine N-7 and thymine O-2 are included. The Fe(III) cation shows stronger interaction with DNA bases and the backbone phosphate group. At low cation concentration (r = 1:80), Fe(III) binds mainly to the backbone phosphate group, while at higher metal ion content, cation binding to both guanine N-7 atom and the backbone phosphate group is prevailing with specific binding constants of K(G) = 1.36 x 10(5) M(-1) and K(P) = 5.50 x 10(4) M(-1). At r = 1:10, Fe(II) binding causes a minor helix destabilization, whereas Fe(III) induces DNA condensation. No major DNA conformational changes occurred upon iron complexation and DNA remains in the B-family structure.  相似文献   
4.
Abstract

We report the interaction of calf-thymus DNA with D-glucose, D-fructose, D-galactose and sucrose in aqueous solution at physiological pH with sugar/DNA(P)(P=phosphate) molar ratios (r) of 1/10,1/5,1,5 and 10. FTIR difference spectroscopy was used to characterize the nature of sugar-DNA interaction and correlations between spectral changes and structural variations for both sugar and DNA complexes have been established.

FTIR difference spectroscopic results showed major sugar interaction (H-bonding) with the P02 groups of the backbone at low sugar concentrations (r= 1/10 and 1/5). Such interaction was characterized by the shift and the intensity variations of the backbone P02 antisymmetric stretch at 1222 cm?1, which resulted in a major helical stability of DNA duplex. As sugar concentration increased, carbohydrate binding to DNA bases occurred. Evidence for this comes from major shiftings of the sugar O-H stretching vibrations at 3500–3200 cm?1, and sugar C-O stretches and OH bending modes at 1450–1000 cm”. Similarly, shifting and intensity variations of several DNA in-plane vibrations at 1717 (G,T), 1663 (T,G,A,C) and 1492 cm?1 (C,G) were observed, that are characterized by the presence of sugar-base interaction (via H20). The shiftings and the intensity changes of the sugar OH stretching modes at 35003200 cm?1 are also indicative of the rearrangements of the sugar intermolecular H-bonding network, on DNA complex formation. A partial B to A conformational transition was observed for DNA molecule on sugar complexation, whereas carbohydrate binding occurred via both a- and β-anomeric structures.  相似文献   
5.
Abstract

The interaction of calf-thymus DNA with trivalent Al and Ga cations, in aqueous solution at pH =6–7 with cation/DNA(P) (P=phosphate) molar ratios (r) 1/80, 1/40, 1/20, 1/10, 1/4 and 1/2 was characterized by Fourier Transform infrared (FTIR) difference spectroscopy.

Spectroscopic results show the formation of several types of cation-DNA complexes. At low metal ion concentration (r=l/80, 1/40), both cations bind mainly to the backbone PO2 group and the guanine N-7 site of the G-C base pairs (chelation). Evidence for cation chelate formation comes from major shifting and intensity increase of the phosphate antisymmetric stretch at 1222 cm-1 and the mainly guanine band at 1717 cm1. The perturbations of A-T base pairs occur at high cation concentration with major helix destabilization. Evidence for cation binding to A-T bases comes from major spectral changes of the bands at 1663 and 1609 cm-1 related mainly to the thymine and adenine in-plane vibrations. A major reduction of the B-DNA structure occurs in favor of A-DNA upon trivalent cation coordination.  相似文献   
6.
IntroductionWhen ictal and interictal brain SPECT are reconstructed with filtered backprojection (FBP), the noise level of subtraction images is frequently high and requires the use of thresholding methods. The aim of this study was to compare the subtraction images for cerebral SPECT reconstructed either with FBP or with a 3D iterative reconstruction method (OSEM-3D).Material and methodsAfter optimisation of the reconstruction parameters on phantom, the subtraction SPECT images, which were obtained with FBP or with OSEM-3D and coregistered with MRI images, were analyzed in 15 patients with refractory temporal epilepsy.ResultsOn phantom and with the constrain of high enough spatial resolution (full width at half of maximum for a punctual source less than or equal to 11 mm) were reached using: (i) a Butterworth filter with a cut-off frequency of 0.4 Nyquist at order 6 for FBP and (ii) five iterations, 16 subsets and a 9 mm gaussian filter for OSEM-3D. On the subtraction images, which were obtained with these optimal parameters, the temporal foci from patients were smaller with OSEM-3D than with FBP (11 ± 6 cm3 versus 17 ± 10 cm3, P = 0.02), mean voxel activities were equivalent between the two methods within temporal foci (6.30 ± 3.13 counts versus 6.34 ± 4.93 counts) but these activities were dramatically reduced by OSEM-3D within background regions (0.02 ± 0.02 counts versus 0.19 ± 0.12 counts, P < 0.001).ConclusionFor the ictal–interictal subtraction SPECT images, which are obtained in patients with refractory temporal epilepsy, the use of an optimized OSEM-3D method leads to dramatically reduce the volume of temporal foci, as well as the background noise level, two properties that are likely to facilitate the detection and localisation of epilepsy foci.  相似文献   
7.
Abstract

The interaction of calf-thymus DNA with La3+, Eu3+ and Tb3+ has been investigated in aqueous solution at pH 6.5, using metal/DNA(P) molar ratios (r) 1/80, 1/40, 1/20, 1/10, 1/4 and 1/2. Correlations between FTIR spectral changes and DNA structural properties have been established. At low metal/DNA(P) (r) 1/80, the metal ions bind mainly to the PO? 2 groups of the backbone, resulting in increased base-stacking interaction and duplex stability. At (r) 1/40 and 1/20, metal ion binding to the PO? 2 and the guanine N-7 site (chelation) predominates with minor perturbations of the A-T base pairs. Evidence for this comes from the displacement of the band at 1712 cm?1 (T,G) towards a lower frequency and the PO? 2 antisymmetric band at 1222 cm?1 towards a higher frequency. At higher metal/DNA(P) ratio, r> 1/20, DNA begins to condensate and drastic structural changes occur, which are accompanied by the shift and intensity changes of several G-C and A-T absorption bands. No major departure from B-DNA conformation was observed before and after DNA condensation eventhough some local structural modifications were observed. A comparison with the Cu-DNA complexes (denaturated DNA) shows some degree of helical destabilizition of the biopolymer in the presence of lanthanide ions.  相似文献   
8.
Human population movements in North Africa have been mostly restricted to an east-west direction due to the geographical barriers imposed by the Sahara Desert and the Mediterranean Sea. Although these barriers have not completely impeded human migrations, genetic studies have shown that an east-west genetic gradient exists. However, the lack of genetic information of certain geographical areas and the focus of some studies in parts of the North African landscape have limited the global view of the genetic pool of North African populations. To provide a global view of the North African genetic landscape and population structure, we have analyzed ~2,300 North African mitochondrial DNA lineages (including 269 new sequences from Libya, in the first mtDNA study of the general Libyan population). Our results show a clinal distribution of certain haplogroups, some of them more frequent in Western (H, HV0, L1b, L3b, U6) or Eastern populations (L0a, R0a, N1b, I, J) that might be the result of human migrations from the Middle East, sub-Saharan Africa, and Europe. Despite this clinal pattern, a genetic discontinuity is found in the Libyan/Egyptian border, suggesting a differential gene flow in the Nile River Valley. Finally, frequency of the post-LGM subclades H1 and H3 is predominant in Libya within the H sequences, highlighting the magnitude of the LGM expansion in North Africa.  相似文献   
9.
The insulin (INS) region is the second most important locus associated with Type 1 Diabetes (T1D). The study of the DNA methylation pattern of the 7 CpGs proximal to the TSS in the INS gene promoter revealed that T1D patients have a lower level of methylation of CpG -19, -135 and -234 (p?=?2.10(-16)) and a higher methylation of CpG -180 than controls, while methylation was comparable for CpG -69, -102, -206. The magnitude of the hypomethylation relative to a control population was 8-15% of the corresponding levels in controls and was correlated in CpGs -19 and -135 (r?=?0.77) and CpG -135 and -234 (r?=?0.65). 70/485 (14%) of T1D patients had a simultaneous decrease in methylation of CpG -19, -135, -234 versus none in 317 controls. CpG methylation did not correlate with glycated hemoglobin or with T1D duration. The methylation of CpG -69, -102, -180, -206, but not CpG -19, -135, -234 was strongly influenced by the cis-genotype at rs689, a SNP known to show a strong association with T1D. We hypothesize that part of this genetic association could in fact be mediated at the statistical and functional level by the underlying changes in neighboring CpG methylation. Our observation of a CpG-specific, locus-specific methylation pattern, although it can provide an epigenetic biomarker of a multifactorial disease, does not indicate whether the reported epigenetic pattern preexists or follows the establishment of T1D. To explore the effect of chronic hyperglycemia on CpG methylation, we studied non obese patients with type 2 diabetes (T2D) who were found to have decreased CpG-19 methylation versus age-matched controls, similar to T1D (p?=?2.10(-6)) but increased CpG-234 methylation (p?=?5.10(-8)), the opposite of T1D. The causality and natural history of the different epigenetic changes associated with T1D or T2D remain to be determined.  相似文献   
10.
Chromium(VI) salts are well known to be mutagens and carcinogens and to easily cross the cell membranes. Because they are powerful oxidizing agents, Cr(VI) reacts with intracellular materials to reduce to trivalent form, which binds DNA. This study was designed to investigate the interaction of calf thymus DNA with Cr(VI) and Cr(III) in aqueous solution at pH 6.5-7.5, using Cr(VI)/DNA(P) molar ratios (r) of 1:20 to 2:1 and Cr(III)/DNA(P) molar ratios (r) of 1:80 to 1:2. UV-visible and Fourier transform infrared (FTIR) difference spectroscopic methods were used to determine the metal ion-binding sites, binding constants, and the effect of cation complexation on DNA secondary structure. Spectroscopic results showed no interaction of Cr(VI) with DNA at low anion concentrations (r = 1:20 to 1:1), whereas some perturbations of DNA bases and backbone phosphate were observed at very high Cr(VI) contents (r > 1) with overall binding constant of K = 508 M(-1). Cr(III) chelates DNA via guanine N-7 and the nearest PO(2) group with overall binding constant of K = 3.15 x 10(3) M(-1). Evidence for cation chelate formation comes from major shiftings and intensity variations of the guanine band at 1717 and the phosphate asymmetric stretching vibration at 1222 cm(-1). At low Cr(III) concentration (r = 1:40), the number of Cr(III) ions bound to DNA were 6-7 cations/500 base pairs, and this increased to 30-35 cations/500 base pairs at high metal ion content (r = 1:4). DNA condensation occurred at high cation concentration (r = 1:10). No major alteration of DNA conformation was observed, and the biopolymer remained in the B family structure upon chromium complexation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号