首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   373篇
  免费   18篇
  2021年   5篇
  2020年   3篇
  2019年   5篇
  2018年   5篇
  2017年   6篇
  2016年   11篇
  2015年   12篇
  2014年   18篇
  2013年   54篇
  2012年   27篇
  2011年   32篇
  2010年   23篇
  2009年   18篇
  2008年   28篇
  2007年   21篇
  2006年   16篇
  2005年   17篇
  2004年   13篇
  2003年   19篇
  2002年   18篇
  2001年   3篇
  2000年   4篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1995年   2篇
  1994年   1篇
  1991年   6篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1983年   2篇
  1980年   1篇
  1979年   3篇
  1978年   3篇
  1977年   1篇
排序方式: 共有391条查询结果,搜索用时 31 毫秒
1.
Pancreatic islets of Langerhans consist of endocrine cells, primarily α, β and δ cells, which secrete glucagon, insulin, and somatostatin, respectively, to regulate plasma glucose. β cells form irregular locally connected clusters within islets that act in concert to secrete insulin upon glucose stimulation. Due to the central functional significance of this local connectivity in the placement of β cells in an islet, it is important to characterize it quantitatively. However, quantification of the seemingly stochastic cytoarchitecture of β cells in an islet requires mathematical methods that can capture topological connectivity in the entire β-cell population in an islet. Graph theory provides such a framework. Using large-scale imaging data for thousands of islets containing hundreds of thousands of cells in human organ donor pancreata, we show that quantitative graph characteristics differ between control and type 2 diabetic islets. Further insight into the processes that shape and maintain this architecture is obtained by formulating a stochastic theory of β-cell rearrangement in whole islets, just as the normal equilibrium distribution of the Ornstein-Uhlenbeck process can be viewed as the result of the interplay between a random walk and a linear restoring force. Requiring that rearrangements maintain the observed quantitative topological graph characteristics strongly constrained possible processes. Our results suggest that β-cell rearrangement is dependent on its connectivity in order to maintain an optimal cluster size in both normal and T2D islets.  相似文献   
2.
The present study was designed to determine urinary excretion of kallikrein(KAL)-kinin as well as prostaglandin (PG) E2, TXB2 and 2,3-dinor-TXB2, a major urinary metabolite of TXA2 synthesized in platelets, by specific RIAs in patients with diabetes mellitus (DM). KAL or kinin excretion in 26 type II DM did not differ from control values obtained in 18 age-matched healthy subjects (C), although DM with HbA1 greater than 11% excreted less KAL. Urinary PGE2 excretion (7.6 +/- 2.8 ng/mg creatinine, mean +/- SE) was significantly lower in DM compared to C (17.5 +/- 3.9, p less than 0.05), while DM excreted more TXB2 (0.57 +/- 0.09, p less than 0.01) and 2,3-dinor-TXB2 (0.56 +/- 0.12, N.S.) than C (0.19 +/- 0.02 or 0.33 +/- 0.01). DM with or without mild proteinuria demonstrated lower PGE2, but higher TXB2 and 2,3-dinor-TXB2 excretion. A positive correlation of TXB2/2,3-dinor-TXB2 with proteinuria was observed in this group. However, in DM with massive proteinuria over 500 micrograms/mg creatinine, TXB2 and 2,3-dinor-TXB2 excretion decreased to levels almost identical to C. As a whole, a ratio of TXB2 to PGE2 or 2,3-dinor-TXB2 in DM was significantly higher than in C. The results suggest that a relative preponderance of TXB2 to 2,3-dinor-TXB2 may indicate an augmented renal, in addition to platelet, TXA2 synthesis. An excessive vasoconstrictive and proaggregatory TXA2 renal synthesis, concomitant with a decrease in vasodilatory and antiaggregatory PGE2, may have profound effects on renal functions such as protein excretion in DM.  相似文献   
3.
To examine the effects of chilling of leaves of cucumber (Cucumissativus L.) in moderate light on the coupling state of thylakoidsin situ, changes in fluorescence, changes in light scatteringand flash-induced changes in absorbance at 518 nm were examinedin intact leaves. After chilling of leaves at 5?C in the lightfor 5 h, the non-photochemical quenching of fluorescence, ameasure of energisation of thylakoids, was largely suppressed.The treatment also caused a suppression of light-induced changesin the light scattering by leaves, which depends on the formationof a pH gradient across thylakoid membranes. When thylakoidswere prepared by very gentle methods from the leaves chilledin the light, through a step of preparation of intact chloro-plasts,the transport of electrons from H2O to ferricyanide was uncoupled,being insensitive to an uncoupler, methylamine. These data provide consistent evidence that the thylakoids areuncoupled in situ by the chilling of leaves in the light and,as a consequence of the uncoupling, the energisation of themembranes is suppressed. However, the decay of the flash-inducedchange in absorbance at 518 nm in leaves was not markedly acceleratedby the treatment. The thylakoids isolated from leaves chilledin the light, which were in the uncoupled state, also did notshow a rapid decay, unless an efficient uncoupler such as gramicidinwas added. These results suggest that even a considerable uncouplingof thylakoids, brought about by chilling of leaves in the light,is not sufficient to cause a marked acceleration of the decayof the flash-induced change in absorbance at 518 nm. Therefore,analysis at 518 nm is not always a sensitive method for assessingthe coupling state of thylakoids. (Received July 1, 1991; Accepted October 4, 1991)  相似文献   
4.
The correlation between plasma C-peptide immunoreactivity (CPR) and immunoreactive insulin (IRI) was investigated during the oral glucose tolerance test in 20 normals, 127 diabetics, and 39 non-diabetics with chronic liver or renal disorders. When all subjects were included, the increment of CPR 30 minutes after glucose load (deltaCPR) correlated well with that of IRI (deltaIRI) (r = 0.66, p less than 0.001), but the return of CPR towards the basal level was delayed as compared with IRI. The positive correlation was also observed between the sum of 6 IRI and that of 6 CPR values during the glucose tolerance test in diabetics and controls (r = 0.53, p less than 0.001). deltaCPR/deltaBS (30 min.) was also well correlated with deltaIRI/deltaBS (30 min.), and was specifically low in diabetics. Insulin-treated maturity-onset diabetics showed low but considerable CPR responses while no CPR responses were observed in insulin-treated juvenile diabetics. In each plasma sample, CPR always exceeded IRI on the molar basis. At fasting CPR/IRI ratio was 15.6 +/- 1.7 (mean +/- SE) in normals and 14.9 +/- 1.3 approximately 16.9 +/- 1.0 in diabetics. In chronic liver diseases IRI response was augmented while CPR response was not different from that of controls, and the molar ratio of CPR/IRI was significantly low (9.5 +/- 1.1). On the contrary, it exceeded that of normals in chronic renal diseases (35.7 +/- 14.9). It is concluded that, first, the plasma CPR response appears to be a valuable indicator of pancreatic B-cell function, and second, it is, nevertheless, modified in chronic liver or renal disorders.  相似文献   
5.
piRNA (PIWI-interacting RNA) is a germ cell–specific small RNA in which biogenesis PIWI (P-element wimpy testis) family proteins play crucial roles. MILI (mouse Piwi-like), one of the three mouse PIWI family members, is indispensable for piRNA production, DNA methylation of retrotransposons presumably through the piRNA, and spermatogenesis. The biogenesis of piRNA has been divided into primary and secondary processing pathways; in both of these MILI is involved in mice. To analyze the molecular function of MILI in piRNA biogenesis, we utilized germline stem (GS) cells, which are derived from testicular stem cells and possess a spermatogonial phenotype. We established MILI-null GS cell lines and their revertant, MILI-rescued GS cells, by introducing the Mili gene with Sendai virus vector. Comparison of wild-type, MILI-null, and MILI-rescued GS cells revealed that GS cells were quite useful for analyzing the molecular mechanisms of piRNA production, especially the primary processing pathway. We found that glycerol-3-phosphate acyltransferase 2 (GPAT2), a mitochondrial outer membrane protein for lysophosphatidic acid, bound to MILI using the cells and that gene knockdown of GPAT2 brought about impaired piRNA production in GS cells. GPAT2 is not only one of the MILI bound proteins but also a protein essential for primary piRNA biogenesis.  相似文献   
6.
Two novel flavonoids, named meliflavones A (1) and B (2), were isolated from the leaves of Melicope triphylla (Lam.) Merr., along with thirteen known compounds (315). Four of the polymethoxyflavonoids bearing a prenyloxy (3-methylbut-2-enyloxy) function (1, 35) induced the expression of extracellular-superoxide dismutase (EC-SOD) in a human leukemic U937 cell-based assay.  相似文献   
7.
Molecular Biology Reports - LL-37, the only member of the cathelicidin family of cationic antimicrobial peptides in humans has been shown to exhibit a wide variety of biological actions in addition...  相似文献   
8.
9.
To develop the infrastructure for biotin production through naturally biotin-auxotrophic Corynebacterium glutamicum, we attempted to engineer the organism into a biotin prototroph and a biotin hyperauxotroph. To confer biotin prototrophy on the organism, the cotranscribed bioBF genes of Escherichia coli were introduced into the C. glutamicum genome, which originally lacked the bioF gene. The resulting strain still required biotin for growth, but it could be replaced by exogenous pimelic acid, a source of the biotin precursor pimelate thioester linked to either coenzyme A (CoA) or acyl carrier protein (ACP). To bridge the gap between the pimelate thioester and its dedicated precursor acyl-CoA (or -ACP), the bioI gene of Bacillus subtilis, which encoded a P450 protein that cleaves a carbon-carbon bond of an acyl-ACP to generate pimeloyl-ACP, was further expressed in the engineered strain by using a plasmid system. This resulted in a biotin prototroph that is capable of the de novo synthesis of biotin. On the other hand, the bioY gene responsible for biotin uptake was disrupted in wild-type C. glutamicum. Whereas the wild-type strain required approximately 1 μg of biotin per liter for normal growth, the bioY disruptant (ΔbioY) required approximately 1 mg of biotin per liter, almost 3 orders of magnitude higher than the wild-type level. The ΔbioY strain showed a similar high requirement for the precursor dethiobiotin, a substrate for bioB-encoded biotin synthase. To eliminate the dependency on dethiobiotin, the bioB gene was further disrupted in both the wild-type strain and the ΔbioY strain. By selectively using the resulting two strains (ΔbioB and ΔbioBY) as indicator strains, we developed a practical biotin bioassay system that can quantify biotin in the seven-digit range, from approximately 0.1 μg to 1 g per liter. This bioassay proved that the engineered biotin prototroph of C. glutamicum produced biotin directly from glucose, albeit at a marginally detectable level (approximately 0.3 μg per liter).  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号