首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2006年   1篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
Kim  Ok-Hee  Kang  Gun-Hyung  Noh  Hyungjoon  Cha  Ji-Young  Lee  Ho-Jae  Yoon  Jeong-Hwan  Mamura  Mizuko  Nam  Jeong-Seok  Lee  Dae Ho  Kim  Young A.  Park  Young Joo  Kim  Hyeonjin  Oh  Byung-Chul 《Molecules and cells》2013,36(5):432-438
Tumor-associated macrophages (TAMs) accumulate in various cancers and promote tumor angiogenesis and metastasis, and thus may be ideal targets for the clinical diagnosis of tumor metastasis with high specificity. However, there are few specific markers to distinguish between TAMs and normal or inflammatory macrophages. Here, we show that TAMs localize in green fluorescent protein-labeled tumors of metastatic lymph nodes (MLNs) from B16F1 melanoma cells but not in necrotic tumor regions, suggesting that TAMs may promote the growth of tumor cells and the progression of tumor metastasis. Furthermore, we isolated pure populations of TAMs from MLNs and characterized their gene expression signatures compared to peritoneal macrophages (PMs), and found that TAMs significantly overexpress immunosuppressive cytokines such as IL-4, IL-10, and TGF-β as well as proangiogenic factors such as VEGF, TIE2, and CD31. Notably, immunological analysis revealed that TIE2+/CD31+ macrophages constitute the predominant population of TAMs that infiltrate MLNs, distinct from tissue or inflammatory macrophages. Importantly, these TIE2+/CD31+ macrophages also heavily infiltrated MLNs from human breast cancer biopsies but not reactive hyperplastic LNs. Thus, TIE2+/CD31+ macrophages may be a unique histopathological biomarker for detecting metastasis in clinical diagnosis, and a novel and promising target for TAM-specific cancer therapy.  相似文献   
2.
Tumor necrosis factor (TNF) plays an import role in the control of apoptosis. The most well known apoptotic pathway regulated by TNF involves the TNFR1-associated death domain protein, Fas-associated death domain protein, and caspase-8. This study examines the mechanism of TNF-induced apoptosis in FaO rat hepatoma cells. TNF treatment significantly increased the percentage of apoptotic cells. TNF did not activate caspase-8 but activated caspase-3, -10, and -12. The effect of TNF on the expression of different members of the Bcl-2 family in these cells was studied. We observed no detectable changes in the steady-state levels of Bcl-X(L), Bax, and Bid, although TNF suppresses Bcl-2 expression. Dantrolene suppressed the inhibitory effect of TNF on Bcl-2 expression. TNF induced release of Ca(2+) from the endoplasmic reticulum (ER) that was blocked by dantrolene. Importantly, the expression of Bcl-2 blocked TNF-induced apoptosis and decreased TNF-induced Ca(2+) release. These results suggest that TNF induces apoptosis by a mechanism that involves increasing Ca(2+) release from the ER and suppression of Bcl-2 expression.  相似文献   
3.
Dipeptidyl peptidase activity was investigated in snake venoms from Gloydius blomhoffi brevicaudus, Gloydius halys blomhoffii, Trimeresurus flavoviridis and Crotalus atrox. The strongest dipeptidyl peptidase IV (DPP IV) activity was found in venom from G. blomhoffi brevicaudus. The substrate specificity, susceptibility to inhibitors, and pH optimum of the partially purified enzyme were similar to those of known DPP IVs from bacteria and eukaryotes. The G. blomhoffi brevicaudus venom gland cDNA library was screened to isolate cDNA clones using probes based on amino acid sequences highly conserved in known DPP IVs. Two cDNA species encoding DPP IV were obtained, and designated as DPP IVa and DPP IVb. This is the first study to report the primary structure of DPP IV from a reptile. The deduced amino acid sequences for DPP IVa and DPP IVb both consist of 751amino acid residues and are highly homologous to each other. A putative catalytic triad for serine proteases, Ser-616, Asp-694, and His-726, is present. It is of particular interest that the deduced NH(2)-terminal sequence associated with the characteristic signal peptide is identical to that determined from the purified DPP IV. This indicates that the signal peptide of snake venom DPP IV is not cleaved off during biosynthesis, unlike those of other snake venom proteins.  相似文献   
4.
There is increasing evidence that mesangial cells are important targets of chronic hypoxia injury. Impaired Ca(2+) signaling has been found in mesangial cells (MCs) subjected to chronic hypoxia. However, the mechanisms underlying this phenomenon have not yet been defined. In the present study, we found that chronic hypoxia enhanced the expression of TRPC6 and TRPC6-dependent Ca(2+) entry, and TRPC6 knockdown inhibited the chronic hypoxia-induced increase in [Ca(2+)]i, suggesting that TRPC6-mediated Ca(2+) entry is responsible for the elevated [Ca(2+)]i induced by chronic hypoxia in MCs. In addition, TRPC6 knockdown attenuated chronic hypoxia-induced actin assembly and actin reorganization. We concluded that the upregulation of TRPC6 is involved in the Ca(2+) signaling and actin assembly in human MCs after chronic hypoxia. These findings provide new insight into the mechanisms underlying the cellular response of MCs to hypoxia.  相似文献   
5.
6.
Selective estrogen receptor modulator is a proven agent for chemoprevention and chemotherapy of cancer. Raloxifene, a mixed estrogen agonist/antagonist, was developed to prevent osteoporosis and potentially reduce the risk of breast cancer. In this study, we examined the effect of raloxifene on the TSU-PR1 cell line. This cell line was originally reported to be a prostate cancer cell line, but recently it has been shown to be a human bladder transitional cell carcinoma cell line. The TSU-PR1 cell line contains high levels of estrogen receptor beta. Following treatment with raloxifene, evidence of apoptosis, including change in nuclear morphology, DNA fragmentation, and cytochrome c release, was observed in a dose-dependent manner in the TSU-PR1 cells (10(-9) to 10(-6) m range). We observed no detectable change in the steady-state levels of Bax, Bcl-2, and Bcl-X(L) following raloxifene treatment. However, raloxifene induced caspase-dependent cleavage of BAD to generate a 15-kDa truncated protein. Overexpression of a double mutant BAD resistant to caspase 3 cleavage blocked raloxifene-induced apoptosis. These results demonstrate that raloxifene induces apoptosis through the cleavage of BAD in TSU-PR1 cells. This molecular mechanism of apoptosis suggests that raloxifene may be a therapeutic agent for human bladder cancer.  相似文献   
7.
TGF-beta modulates immune responses by regulating T cell function. The Smad family of proteins has been recently shown to transduce signals for the TGF-beta superfamily and Smad2 mediates TGF-beta signaling. Here, we showed that TGF-beta phosphorylated Smad2 and induced interaction between Smad2 and Smad4 in primary T cells and the Jurkat T cell line. Interestingly, ligation of the T cell receptor (TCR)/CD3 complex with anti-CD3 mAb also phosphorylated Smad2, but failed to induce interaction between Smad2 and Smad4 in the Jurkat T cell line. Phosphorylation of Smad2 via the TCR/CD3 complex was not abrogated by treatment with neutralizing antibody against TGF-beta. Furthermore, PD98059, a MEK inhibitor, suppressed Smad2 phosphorylation by stimulation with anti-CD3 mAb in Jurkat T cell line. These findings indicated that not only TGF-beta but also stimulation via the TCR/CD3 complex phosphorylated Smad2 through mitogen-activated protein (MAP) kinase cascades, suggesting that Smad2 may function in both TGF-beta- and TCR/CD3 complex-mediated signaling pathways in T cells.  相似文献   
8.
9.
Transforming growth factor beta (TGF-beta) induces apoptosis in a variety of cells. We have previously shown that TGF-beta 1 rapidly induces apoptosis in the FaO rat hepatoma cell line. We have now studied the effect of TGF-beta 1 on the expression of different members of the Bcl-2 family in these cells. We observed no detectable changes in the steady-state levels of Bcl-2, Bcl-X(L), and Bax. However, TGF-beta 1 induced caspase-dependent cleavage of BAD at its N terminus to generate a 15-kDa truncated protein. Overexpression of the 15-kDa truncated BAD protein enhanced TGF-beta 1-induced apoptosis, whereas a mutant BAD resistant to caspase 3 cleavage blocked TGF-beta 1-induced apoptosis. Overexpression of Smad3 dramatically enhanced TGF-beta 1-induced cleavage of BAD and apoptosis, whereas antisense Smad3 blocked TGF-beta 1-induced apoptosis and BAD cleavage. These results suggest that TGF-beta 1 induces apoptosis through the cleavage of BAD in a Smad3-dependent mechanism.  相似文献   
10.
Anti-glomerular basement membrane (GBM) Ab-induced glomerulonephritis (GN) at late stage is thought to be mediated by T cells. However, signaling pathways of T cells that are involved in the development of anti-GBM Ab-induced GN are unclear. We have recently established transgenic mice expressing Smad7, an inhibitor of TGF-beta signaling, in mature T cells, where signaling by TGF-beta was blocked specifically in T cells. In this study, we showed that anti-GBM Ab-induced GN was suppressed in several measures in the transgenic mice including the severity of glomerular changes, proteinuria, renal function, and CD4 T cell infiltration into the glomeruli without down-regulation of CD62 ligand (CD62L) (L-selectin) expression on CD4 T cells. Furthermore, treatment with the soluble fusion protein of CD62L and IgG enhanced anti-GBM Ab-induced GN. These findings indicated that blockade of TGF-beta signaling in T cells prevented the development of anti-GBM Ab-induced GN. Because CD62L on T cells appears to be inhibitory for the development of anti-GBM Ab-induced GN, persistent expression of CD62L on CD4 T cells may explain, at least in part, the suppression of anti-GBM Ab-induced GN in the transgenic mice. Our findings suggest that the development of anti-GBM Ab-induced GN requires TGF-beta/Smad signaling in T cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号