首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  4篇
  2021年   1篇
  2017年   1篇
  2000年   2篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Journal of Ichthyology - Based on the morphological features, four rare alien species in the Kapchagai reservoir were identified: Coregonus peled, Parasalmo mykiss, Megalobrama mantschuricus, and...  相似文献   
2.
Sequences of mitochondrial (cytochrome b) and nuclear (recombination activating gene 1–RAG1) DNA markers were obtained for two species of the genus Alburnoides, the Taskent riffle minnow A. oblongus Bulgakov 1923 and the Terek spirlin A. gmelini Bogutskaya and Coad 2009. Phylogenetic analysis revealed that A. oblongus belongs to the genus Alburnus.  相似文献   
3.
Microcosm experiments showed that the microbial biomass and the respiration activity in soil were regulated by nematodes. Depending on nematode number and plant residue composition, the trophic activity of nematodes can either stimulate or inhibit microbial growth and respiration as compared to soil containing no nematodes. The stimulating effect was observed when nitrogen-free (starch) or low-nitrogen (wheat straw, C : N = 87) organic substrates were applied. Inhibition occurred when a substrate rich in nitrogen (alfalfa meal, C : N = 28) was decomposed and the nematode population exceeded the naturally occurring level. A conceptual model was developed to describe trophic regulation by microfauna (nematodes) of the microbial productivity and respiration ctivity and decomposition of not readily decomposable organic matter in soil. The stimulating and inhibiting influence of microfauna on soil microorganisms was not a linear function of the rate of microbial consumption by nematodes. These effects are largely associated with the induced change in the physiological state of microorganisms rather than with the mobilization of biogenic elements from the decomposed microbial biomass.  相似文献   
4.
Microcosm experiments showed that the microbial biomass and the respiration activity in soil were regulated by nematodes. Depending on nematode number and plant residue composition, the trophic activity of nematodes can either stimulate or inhibit microbial growth and respiration as compared to soil containing no nematodes. The stimulating effect was observed when nitrogen-free (starch) or low-nitrogen (wheat straw, C:N = 87) organic substrates were applied. Inhibition occurred when a substrate rich in nitrogen (alfalfa meal, C:N = 28) was decomposed and the nematode population exceeded the naturally occurring level. A conceptual model was developed to describe trophic regulation by microfauna (nematodes) of the microbial productivity and respiration activity and decomposition of not readily decomposable organic matter in soil. The stimulating and inhibiting influence of microfauna on soil microorganisms was not a linear function of the rate of microbial consumption by nematodes. These effects are largely associated with the induced change in the physiological state of microorganisms rather than with the mobilization of biogenic elements from the decomposed microbial biomass.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号