首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   42篇
  2022年   3篇
  2021年   7篇
  2020年   7篇
  2019年   7篇
  2018年   11篇
  2017年   8篇
  2016年   8篇
  2015年   18篇
  2014年   17篇
  2013年   15篇
  2012年   25篇
  2011年   18篇
  2010年   9篇
  2009年   12篇
  2008年   16篇
  2007年   12篇
  2006年   7篇
  2005年   10篇
  2004年   7篇
  2003年   5篇
  2002年   3篇
  2001年   5篇
  2000年   7篇
  1999年   2篇
  1998年   4篇
  1997年   5篇
  1994年   4篇
  1991年   3篇
  1990年   2篇
  1987年   2篇
  1985年   3篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
  1973年   3篇
  1972年   2篇
  1971年   4篇
  1970年   3篇
  1969年   2篇
  1968年   2篇
  1967年   1篇
  1964年   1篇
  1952年   1篇
  1936年   1篇
排序方式: 共有299条查询结果,搜索用时 484 毫秒
1.
Summary A survey was made of published results of tests of the capacity of Rhizobium derived from one legume genus to nodulate plants from other genera. The data were derived from more than 14,000 separate cross-inoculation trials involving species from 165 genera of legumes. Numerical taxonomic techniques were applied to 113 of the genera for which results of substantial cross-infection tests were available. The data were examined using mean character difference coefficients re-expressed as total and positive-only similarity coefficients. The resulting similarity matrices were clustered by the unweighted pair-group method using arithmetic averages. Eighteen affinity groups were defined at the 70% similarity level. With few exceptions, the physiological and cultural behavior of the rhizobia was consistent within the defined groups. Two broad categories were suggested in the numerical taxonomic analysis, and their validity is discussed in regard to the geographic, physiological and cultural characteristics of the legumes and their Rhizobium microsymbionts. The taxonomic and agronomic value of this approach and the new groupings are discussed.  相似文献   
2.
3.
4.
The structure and function of the centrosomes from Chinese hamster ovary (CHO) cells were investigated by electron microscopy of negatively stained wholemount preparations of cell lysates. Cells were trypsinized from culture dishes, lysed with Triton X-100, sedimented onto ionized, carbon-coated grids, and negatively stained with phosphotungstate. The centrosomes from both interphase and dividing cells consisted of pairs of centrioles, a fibrous pericentriolar material, and a group of virus-like particles which were characteristic of the CHO cells and which served as markers for the pericentriolar material. Interphase centrosomes anchored up to two dozen microtubules when cells were lysed under conditions which preserved native microtubules. When Colcemid-blocked mitotic cells, initially devoid of microtubules, were allowed to recover for 10 min, microtubules formed at the pericentriolar material, but not at the centrioles. When lysates of Colcemid-blocked cells were incubated in vitro with micotubule protein purified from porcine brain tissue, up to 250 microtubules assembled at the centrosomes, similar to the number of microtubules that would normally form at the centrosome during cell division. A few microtubules could also be assembled in vitro onto the ends of isolated centrioles from which the pericentriolar material had been removed, forming characteristic axoneme- like bundles. In addition, microtubules; were assembled onto fragments of densely staining, fibrous material which was tentatively identified as periocentriolar material by its association of CHO can initiate and anchor microtubules both in vivo and in vitro.  相似文献   
5.
A robust, bistable switch regulates the fluctuations between wakefulness and natural sleep as well as those between wakefulness and anesthetic-induced unresponsiveness. We previously provided experimental evidence for the existence of a behavioral barrier to transitions between these states of arousal, which we call neural inertia. Here we show that neural inertia is controlled by processes that contribute to sleep homeostasis and requires four genes involved in electrical excitability: Sh, sss, na and unc79. Although loss of function mutations in these genes can increase or decrease sensitivity to anesthesia induction, surprisingly, they all collapse neural inertia. These effects are genetically selective: neural inertia is not perturbed by loss-of-function mutations in all genes required for the sleep/wake cycle. These effects are also anatomically selective: sss acts in different neurons to influence arousal-promoting and arousal-suppressing processes underlying neural inertia. Supporting the idea that anesthesia and sleep share some, but not all, genetic and anatomical arousal-regulating pathways, we demonstrate that increasing homeostatic sleep drive widens the neural inertial barrier. We propose that processes selectively contributing to sleep homeostasis and neural inertia may be impaired in pathophysiological conditions such as coma and persistent vegetative states.  相似文献   
6.
7.
  1. Most studies on how rising temperatures will impact terrestrial ectotherms have focused on single populations or multiple sympatric species. Addressing the thermal and energetic implications of climatic variation on multiple allopatric populations of a species will help us better understand how a species may be impacted by altered climates.
  2. We used eight years of thermal and behavioral data collected from four populations of Pacific rattlesnakes (Crotalus oreganus) living in climatically distinct habitat types (inland and coastal) to determine the field‐active and laboratory‐preferred body temperatures, thermoregulatory metrics, and maintenance energetic requirements of snakes from each population.
  3. Physical models showed that thermal quality was best at coastal sites, but inland snakes thermoregulated more accurately despite being in more thermally constrained environments. Projected increases of 1 and 2°C in ambient temperature result in an increase in overall thermal quality at both coastal and inland sites.
  4. Population differences in modeled standard metabolic rate estimates were driven by body size and not field‐active body temperature, with inland snakes requiring 1.6× more food annually than coastal snakes.
  5. All snakes thermoregulated with high accuracy, suggesting that small increases in ambient temperature are unlikely to impact the maintenance energetic requirements of individual snakes and that some species of large‐bodied reptiles may be robust to modest thermal perturbations under conservative climate change predictions.
​  相似文献   
8.
Land‐use/cover change (LUCC) is an important driver of environmental change, occurring at the same time as, and often interacting with, global climate change. Reforestation and deforestation have been critical aspects of LUCC over the past two centuries and are widely studied for their potential to perturb the global carbon cycle. More recently, there has been keen interest in understanding the extent to which reforestation affects terrestrial energy cycling and thus surface temperature directly by altering surface physical properties (e.g., albedo and emissivity) and land–atmosphere energy exchange. The impacts of reforestation on land surface temperature and their mechanisms are relatively well understood in tropical and boreal climates, but the effects of reforestation on warming and/or cooling in temperate zones are less certain. This study is designed to elucidate the biophysical mechanisms that link land cover and surface temperature in temperate ecosystems. To achieve this goal, we used data from six paired eddy‐covariance towers over co‐located forests and grasslands in the temperate eastern United States, where radiation components, latent and sensible heat fluxes, and meteorological conditions were measured. The results show that, at the annual time scale, the surface of the forests is 1–2°C cooler than grasslands, indicating a substantial cooling effect of reforestation. The enhanced latent and sensible heat fluxes of forests have an average cooling effect of ?2.5°C, which offsets the net warming effect (+1.5°C) of albedo warming (+2.3°C) and emissivity cooling effect (?0.8°C) associated with surface properties. Additional daytime cooling over forests is driven by local feedbacks to incoming radiation. We further show that the forest cooling effect is most pronounced when land surface temperature is higher, often exceeding ?5°C. Our results contribute important observational evidence that reforestation in the temperate zone offers opportunities for local climate mitigation and adaptation.  相似文献   
9.
Fine-scale movement data has transformed our knowledge of ungulate migration ecology and now provides accurate, spatially explicit maps of migratory routes that can inform planning and management at local, state, and federal levels. Among the most challenging land use planning issues has been developing energy resources on public lands that overlap with important ungulate habitat, including the migratory routes of mule deer (Odocoileus hemionus). We generally know that less development is better for minimizing negative effects and maintaining habitat function, but we lack information on the amount of disturbance that animals can tolerate before reducing use of or abandoning migratory habitat. We used global positioning system data from 56 deer across 15 years to evaluate how surface disturbance from natural gas well pads and access roads in western Wyoming, USA, affected habitat selection of mule deer during migration and whether any disturbance threshold(s) existed beyond which use of migratory habitat declined. We used resource and step selection functions to examine disturbance thresholds at 3 different spatial scales. Overall, migratory use by mule deer declined as surface disturbance increased. Based on the weight of evidence from our 3 independent but complementary metrics, declines in migratory use related to surface disturbance were non-linear, where migratory use sharply declined when surface disturbance from energy development exceeded 3%. Disturbance thresholds may vary across regions, species, or migratory habitats (e.g., stopover sites). Such information can help with management and land use decisions related to mineral leasing and energy development that overlap with the migratory routes of ungulates. © 2020 The Wildlife Society.  相似文献   
10.

Background

The execution of meiotic nuclear divisions in S. cerevisiae is regulated by protein degradation mediated by the anaphase promoting complex/cyclosome (APC/C) ubiquitin ligase. The correct timing of APC/C activity is essential for normal chromosome segregation. During meiosis, the APC/C is activated by the association of either Cdc20p or the meiosis-specific factor Ama1p. Both Ama1p and Cdc20p are targeted for degradation as cells exit meiosis II with Cdc20p being destroyed by APC/CAma1. In this study we investigated how Ama1p is down regulated at the completion of meiosis.

Findings

Here we show that Ama1p is a substrate of APC/CCdc20 but not APC/CCdh1 in meiotic cells. Cdc20p binds Ama1p in vivo and APC/CCdc20 ubiquitylates Ama1p in vitro. Ama1p ubiquitylation requires one of two degradation motifs, a D-box and a “KEN-box” like motif called GxEN. Finally, Ama1p degradation does not require its association with the APC/C via its conserved APC/C binding motifs (C-box and IR) and occurs simultaneously with APC/CAma1-mediated Cdc20p degradation.

Conclusions

Unlike the cyclical nature of mitotic cell division, meiosis is a linear pathway leading to the production of quiescent spores. This raises the question of how the APC/C is reset prior to spore germination. This and a previous study revealed that Cdc20p and Ama1p direct each others degradation via APC/C-dependent degradation. These findings suggest a model that the APC/C is inactivated by mutual degradation of the activators. In addition, these results support a model in which Ama1p and Cdc20p relocate to the substrate address within the APC/C cavity prior to degradation.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号