首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
  2021年   1篇
  2013年   1篇
  2012年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  1998年   1篇
  1997年   1篇
  1986年   1篇
  1984年   2篇
  1983年   1篇
  1979年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
Fossil sister group of craniates: predicted and found   总被引:12,自引:0,他引:12  
This study investigates whether the recently described Cambrian fossil Haikouella (and the very similar Yunnanozoon) throws light on the longstanding problem of the origin of craniates. In the first rigorous cladistic analysis of the relations of this animal, we took 40 anatomical characters from Haikouella and other taxa (hemichordates, tunicates, cephalochordates, conodont craniates and other craniates, plus protostomes as the outgroup) and subjected these characters to parsimony analysis. The characters included several previously unrecognized traits of Haikouella, such as upper lips resembling those of larval lampreys, the thick nature of the branchial bars, a mandibular branchial artery but no mandibular branchial bar, muscle fibers defining the myomeres, a dark fibrous sheath that defines the notochord, conclusive evidence for paired eyes, and a large hindbrain and diencephalon in the same positions as in the craniate brain. The cladistic analysis produced this tree: (protostomes, hemichordates (tunicates, (cephalochordates, (Haikouella, (conodonts + other craniates))))), with the "Haikouella + craniate" clade supported by bootstrap values that ranged from 81-96%, depending on how the analysis was structured. Thus, Haikouella is concluded to be the sister group of the craniates. Alternate hypotheses that unite Haikouella with hemichordates or cephalochordates, or consider it a basal deuterostome, received little or no support. Although it is the sister group of craniates, Haikouella is skull-less and lacks an ear, but it does have neural-crest derivatives in its branchial bars. Its craniate characters occur mostly in the head and pharynx; its widely spaced, robust branchial bars indicate it ventilated with branchiomeric muscles, not cilia. Despite its craniate mode of ventilation, Haikouella was not a predator but a suspension feeder, as shown by its cephalochordate-like endostyle, and tentacles forming a screen across the mouth. Haikouella was compared to pre-craniates predicted by recent models of craniate evolution and was found to fit these predictions closely. Specifically, it fits Northcutt and Gans' prediction that the change from ciliary to muscular ventilation preceded the change from suspension feeding to predatory feeding; it fits Butler's claim that vision was the first craniate sense to start elaborating; it is consistent with the ideas of Donoghue and others about the ancestor of conodont craniates; and, most strikingly, it resembles Mallatt's prediction of the external appearance of the ancestral craniate head. By contrast, Haikouella does not fit the widespread belief that ancestral craniates resembled hagfishes, because it has no special hagfish characters. Overall, Haikouella agrees so closely with recent predictions about pre-craniates that we conclude that the difficult problem of craniate origins is nearly solved.  相似文献   
2.
Lampreys are important research animals. This study investigates some of the Parameters important for culturing the Suspension feeding larvae: food concentration, temperature and crowding. Large larvae ( Lampetra ( Entosphenus ) tridentata Richardson) were used, weigh-ing from l·5 to 3·0 g (wet). Two food types were employed: suspended yeast cells ( Saccharo-myces cerevisiae , 0–20 mg1 – (dry), or, in a few tests, a fine particulate fish food, Liquifry® (Interpet LTD, 0–13 mg l-1). At both 14 and 4°C, yeast could sustain weight increases comparable to those in nature: >6% month-1 for up to 6 months, the duration of the study. In a single lest, a vitamin Supplement failed to improve growth on yeast. Growth-was fastest at 14°C (+41% month-1, max. weight increase), although also substantial at 4°C (+11% month-1, max). Growth could not be sustained at 20°C, due perhaps to difficulty in removing products of food decay from the aquaria. Food level being constant, growth rate varied inversely with animal density. It is suggested that larval lampreys release a growth-inhibiting substance into the sand which they inhabit. Overall, the best growth was obtained at 14° C, with <0·05g of animal (wet weight) – aquarium water and average daily yeast concentrations between 4 and 13 mg –. Liquifry was associated with lowered growth rates when present continually above 4 mg (dry weight) – (14° C), although growth did occur at lower concentrations.  相似文献   
3.
This work expands on a study from 2004 by Mallatt, Garey, and Shultz [Mallatt, J.M., Garey, J.R., Shultz, J.W., 2004. Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. Mol. Phylogenet. Evol. 31, 178-191] that evaluated the phylogenetic relationships in Ecdysozoa (molting animals), especially arthropods. Here, the number of rRNA gene-sequences was effectively doubled for each major group of arthropods, and sequences from the phylum Kinorhyncha (mud dragons) were also included, bringing the number of ecdysozoan taxa to over 80. The methods emphasized maximum likelihood, Bayesian inference and statistical testing with parametric bootstrapping, but also included parsimony and minimum evolution. Prominent findings from our combined analysis of both genes are as follows. The fundamental subdivisions of Hexapoda (insects and relatives) are Insecta and Entognatha, with the latter consisting of collembolans (springtails) and a clade of proturans plus diplurans. Our rRNA-gene data provide the strongest evidence to date that the sister group of Hexapoda is Branchiopoda (fairy shrimps, tadpole shrimps, etc.), not Malacostraca. The large, Pancrustacea clade (hexapods within a paraphyletic Crustacea) divided into a few basic subclades: hexapods plus branchiopods; cirripedes (barnacles) plus malacostracans (lobsters, crabs, true shrimps, isopods, etc.); and the basally located clades of (a) ostracods (seed shrimps) and (b) branchiurans (fish lice) plus the bizarre pentastomids (tongue worms). These findings about Pancrustacea agree with a recent study by Regier, Shultz, and Kambic that used entirely different genes [Regier, J.C., Shultz, J.W., Kambic, R.E., 2005a. Pancrustacean phylogeny: hexapods are terrestrial crustaceans and maxillopods are not monophyletic. Proc. R. Soc. B 272, 395-401]. In Malacostraca, the stomatopod (mantis shrimp) was not at the base of the eumalacostracans, as is widely claimed, but grouped instead with an euphausiacean (krill). Within centipedes, Craterostigmus was the sister to all other pleurostigmophorans, contrary to the consensus view. Our trees also united myriapods (millipedes and centipedes) with chelicerates (horseshoe crabs, spiders, scorpions, and relatives) and united pycnogonids (sea spiders) with chelicerates, but with much less support than in the previous rRNA-gene study. Finally, kinorhynchs joined priapulans (penis worms) at the base of Ecdysozoa.  相似文献   
4.
Relationships among the ecdysozoans, or molting animals, have been difficult to resolve. Here, we use nearly complete 28S+18S ribosomal RNA gene sequences to estimate the relations of 35 ecdysozoan taxa, including newly obtained 28S sequences from 25 of these. The tree-building algorithms were likelihood-based Bayesian inference and minimum-evolution analysis of LogDet-transformed distances, and hypotheses were tested wth parametric bootstrapping. Better taxonomic resolution and recovery of established taxa were obtained here, especially with Bayesian inference, than in previous parsimony-based studies that used 18S rRNA sequences (or 18S plus small parts of 28S). In our gene trees, priapulan worms represent the basal ecdysozoans, followed by nematomorphs, or nematomorphs plus nematodes, followed by Panarthropoda. Panarthropoda was monophyletic with high support, although the relationships among its three phyla (arthropods, onychophorans, tardigrades) remain uncertain. The four groups of arthropods-hexapods (insects and related forms), crustaceans, chelicerates (spiders, scorpions, horseshoe crabs), and myriapods (centipedes, millipedes, and relatives)-formed two well-supported clades: Hexapoda in a paraphyletic crustacea (Pancrustacea), and 'Chelicerata+Myriapoda' (a clade that we name 'Paradoxopoda'). Pycnogonids (sea spiders) were either chelicerates or part of the 'chelicerate+myriapod' clade, but not basal arthropods. Certain clades derived from morphological taxonomy, such as Mandibulata, Atelocerata, Schizoramia, Maxillopoda and Cycloneuralia, are inconsistent with these rRNA data. The 28S gene contained more signal than the 18S gene, and contributed to the improved phylogenetic resolution. Our findings are similar to those obtained from mitochondrial and nuclear (e.g., elongation factor, RNA polymerase, Hox) protein-encoding genes, and should revive interest in using rRNA genes to study arthropod and ecdysozoan relationships.  相似文献   
5.
Although the small-subunit ribosomal RNA (SSU rRNA) gene is widely used in the molecular systematics, few large-subunit (LSU) rRNA gene sequences are known from protostome animals, and the value of the LSU gene for invertebrate systematics has not been explored. The goal of this study is to test whether combined LSU and SSU rRNA gene sequences support the division of protostomes into Ecdysozoa (molting forms) and Lophotrochozoa, as was proposed by Aguinaldo et al. (1997) (Nature 387:489) based on SSU rRNA sequences alone. Nearly complete LSU gene sequences were obtained, and combined LSU + SSU sequences were assembled, for 15 distantly related protostome taxa plus five deuterostome outgroups. When the aligned LSU + SSU sequences were analyzed by tree-building methods (minimum evolution analysis of LogDet-transformed distances, maximum likelihood, and maximum parsimony) and by spectral analysis of LogDet distances, both Ecdysozoa and Lophotrochozoa were indeed strongly supported (e.g., bootstrap values >90%), with higher support than from the SSU sequences alone. Furthermore, with the LogDet-based methods, the LSU + SSU sequences resolved some accepted subgroups within Ecdysozoa and Lophotrochozoa (e.g., the polychaete sequence grouped with the echiuran, and the annelid sequences grouped with the mollusc and lophophorates)-subgroups that SSU-based studies do not reveal. Also, the mollusc sequence grouped with the sequences from lophophorates (brachiopod and phoronid). Like SSU sequences, our LSU + SSU sequences contradict older hypotheses that grouped annelids with arthropods as Articulata, that said flatworms and nematodes were basal bilateralians, and considered lophophorates, nemerteans, and chaetognaths to be deuterostomes. The position of chaetognaths within protostomes remains uncertain: our chaetognath sequence associated with that of an onychophoran, but this was unstable and probably artifactual. Finally, the benefits of combining LSU with SSU sequences for phylogenetic analyses are discussed: LSU adds signal, it can be used at lower taxonomic levels, and its core region is easy to align across distant taxa-but its base frequencies tend to be nonstationary across such taxa. We conclude that molecular systematists should use combined LSU + SSU rRNA genes rather than SSU alone.  相似文献   
6.
We investigated evolutionary relationships among deuterostome subgroups by obtaining nearly complete large-subunit ribosomal RNA (LSU rRNA)-gene sequences for 14 deuterostomes and 3 protostomes and complete small-subunit (SSU) rRNA-gene sequences for five of these animals. With the addition of previously published sequences, we compared 28 taxa using three different data sets (LSU only, SSU only, and combined LSU + SSU) under minimum evolution (with LogDet distances), maximum likelihood, and maximum parsimony optimality criteria. Additionally, we analyzed the combined LSU + SSU sequences with spectral analysis of LogDet distances, a technique that measures the amount of support and conflict within the data for every possible grouping of taxa. Overall, we found that (1) the LSU genes produced a tree very similar to the SSU gene tree, (2) adding LSU to SSU sequences strengthened the bootstrap support for many groups above the SSU-only values (e.g., hemichordates plus echinoderms as Ambulacraria; lancelets as the sister group to vertebrates), (3) LSU sequences did not support SSU-based hypotheses of pterobranchs evolving from enteropneusts and thaliaceans evolving from ascidians, and (4) the combined LSU + SSU data are ambiguous about the monophyly of chordates. No tree-building algorithm united urochordates conclusively with other chordates, although spectral analysis did so, providing our only evidence for chordate monophyly. With spectral analysis, we also evaluated several major hypotheses of deuterostome phylogeny that were constructed from morphological, embryological, and paleontological evidence. Our rRNA-gene analysis refutes most of these hypotheses and thus advocates a rethinking of chordate and vertebrate origins.  相似文献   
7.
The distribution and ultrastructure of the mitochondria-rich (MR) cells in the gills of larval (ammocoetes) and adult lampreys (Petromyzon marinus and Geotria australis) have been studied. One type of MR cell, which is found only in ammocoetes, occurs in groups on and between gill lamellae. Freeze-fracture replicas show that the apical membrane of this ammocoete MR cell contains globular particles. The second type of MR cell, which is present in both ammocoetes and adults in freshwater, is located between lamellae and at the base of the filament. This cell usually occurs singly and is typically intercalated between ammocoete MR cells in larval lampreys and between pavement cells and pavement and chloride cells in adult lampreys. It contains rod-shaped particles in either the apical membrane (subtype A) or, far less frequently, the lateral membrane (subtype B) and in membranes of cytoplasmic vesicles and tubules. These features characterize this intercalated MR cell as a member of a group of MR cells that are also found in urinary epithelia of tetrapods and the amphibian epidermis, where they are involved in H+ and HCO3 - secretion. Because this type of MR cell disappears when the young adult lamprey enters the sea and reappears immediately after the fully grown adult re-enters freshwater on its spawning run, it is presumably essential for osmoregulation in freshwater. On the basis of electrophysiological studies on frog skin, it is proposed that the subtype A of the branchial intercalated MR cell of lampreys provides the driving force for the Na+ uptake by active H+ secretion. By analogy with urinary epithelia, the subtype B cells may exchange Cl- for HCO3 -.  相似文献   
8.
At the gross anatomical level, hagfish gills show unusual features not seen in any other fish gills. Our study was undertaken to determine if peculiarities also characterize the microscopic anatomy and ultrastructure of hagfish gills. To the contrary, branchial respiratory lamellae of Pacific hagfish were found to resemble the lamellae of lampreys, elasmobranchs, and teleosts, often down to the finest subcellular details. As in other fish, hagfish lamellae are lined by epithelium containing pavement cells with organelles indicative of a secretory function, basal cells showing undifferentiated cell features, and branchial ionocytes. The ionocytes are identical to chloride cells of teleosts in cytostructure, distribution, and abundance. There are pillar and marginal capillaries in hagfish gill lamellae. Pillar cells contain bundles of 5-nm microfilaments, and they associate with collagen columns as in other fish. Hagfish pillar cells do exhibit odd features, however: They cluster (groups of up to nine were seen), and their extracellular collagen columns are rarer than in other fish gills (averaging only two columns per three pillar cells). Other special features of hagfish gills are the following: lipid droplets and smooth endoplasmic reticulum are well developed in all cell types; pavement cells secrete a lipomucous product (stains with periodic acid-Schiff, Alcian blue, and Sudan black B); and goblet cells are absent. The presence of "chloride cells" in hagfish is puzzling, as hagfish body fluids are iso-osmotic to seawater and there is no need to osmoregulate for sodium chloride; the ionocytes contain carbonic anhydrase, suggesting a function in acid/base regulation.  相似文献   
9.
Sequence divergence was evaluated in the non-recombining, male-specific OmyY1 region of the Y chromosome among the subspecies of cutthroat trout (Oncorhynchus clarkii) in the western United States. This evaluation identified subspecies-discriminating OmyY1-haplotypes within a ~1200 bp region of the OmyY1 locus and localized the region to the end of the Y chromosome by FISH analysis. OmyY1 sequences were aligned and used to reconstruct a phylogeny of the cutthroat trout subspecies and related species via maximum-parsimony and Bayesian analyses. In the Y-haplotype phylogeny, clade distributions generally corresponded to the geographic distributions of the recognized subspecies. This phylogeny generally corresponded to a mitochondrial tree obtained for these subspecies in a previous study. Both support a clade of trout vs. Pacific salmon, of rainbow trout, and of a Yellowstone cutthroat group within the cutthroat trout. In our OmyY1 tree, however, the cutthroat “clade”, although present topologically, was not statistically significant. Some key differences were found between trees obtained from the paternally-inherited OmyY1 vs. maternally-inherited mitochondrial haplotypes in cutthroat trout compared to rainbow trout. Other findings are: The trout OmyY1 region evolves between 3 and 13 times slower than the trout mitochondrial regions that have been studied. The Lahontan cutthroat trout had a fixed OmyY1 sequence throughout ten separate populations, suggesting this subspecies underwent a severe population bottleneck prior to its current dispersal throughout the Great Basin during the pluvial phase of the last ice age. The Yellowstone group is the most derived among the cutthroat trout and consists of the Yellowstone, Bonneville, Colorado, Rio Grande and greenback subspecies. Identification of subspecies and sex with this Y-chromosome marker may prove useful in conservation efforts.  相似文献   
10.
The dominant view of the phylogeny of living elasmobranchs, based on morphological characters, is that batoids (skates and rays) are derived sharks, joined with saw sharks, and angel sharks in the clade Hypnosqualea [S. Shirai, Squalean Phylogeny: A New Framework of 'Squaloid' Sharks and Related Taxa, Hokkaido University Press, Sapporo, 1992]. By contrast, a recent molecular-phylogenetic study based on mitochondrial genes for 12S and 16S rRNA and tRNA valine [C.J. Douady et al., Mol. Phylogenet. Evol., 26 (2003) 215-221] supported the older view that batoids and sharks are separate lineages. Here, we tested these two different views using combined, nuclear large-subunit and small-subunit rRNA gene sequences ( approximately 5.3kb) from 22 elasmobranchs, two chimeras, and two bony fishes. We used maximum likelihood, maximum parsimony, minimum evolution, and Bayesian inference for tree reconstruction, and found the large-subunit rRNA gene to contain far more signal than the small-subunit gene for resolving this mostly Mesozoic radiation. Our findings matched those of in separating batoids from sharks and in statistically rejecting Hypnosqualea. The angel shark (Squatina) was the sister group to squaliforms (dogfish sharks), and our findings are consistent with the idea that "orbitostylic" sharks form a monophyletic group (squaliforms+the hexanchiform Chlamydoselachus+Squatina+Pristiophorus). In the galeomorph sharks, however, lamniforms grouped with orectolobiforms, opposing the widely accepted 'lamniform+carcharhiniform' grouping. A tree based on the mitochondrial gene for cytochrome b also supported a separation of sharks and batoids, in contrast to Hypnosqualea. Among elasmobranchs, variation in the evolutionary rates of the nuclear rRNA genes was higher than that of cytochrome b genes, mainly due to the relatively rapid evolution of rRNA in some carcharhiniforms. In conclusion, several different molecular studies now refute the Hypnosqualea hypothesis of elasmobranch interrelationships.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号