首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   1篇
  20篇
  2022年   1篇
  2017年   1篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2000年   1篇
  1990年   1篇
  1954年   1篇
  1953年   2篇
排序方式: 共有20条查询结果,搜索用时 0 毫秒
1.
Fructosamine-3-kinase (FN3K) is a recently described protein-repair enzyme responsible for the removal of fructosamines, which are the products of a spontaneous reaction of glucose with amines. We show here that, compared with glucose, glucose 6-phosphate (Glu-6-P) reacted 3-6-fold more rapidly with proteins and 8-fold more rapidly with N-alpha-t-Boc-lysine, being therefore a more significant intracellular glycating agent than glucose in skeletal muscle and heart. Fructosamine 6-phosphates, which result from the reaction of amines with Glu-6-P, were not substrates for FN3K. However, a phosphatase that dephosphorylates protein-bound fructosamine 6-phosphates was found to be present in rat tissues. This enzyme was purified to near homogeneity from skeletal muscle and was identified as magnesium-dependent phosphatase-1 (MDP-1), an enzyme of the haloacid dehalogenase family with a putative protein-tyrosine phosphatase function. Human recombinant MDP-1 acted on protein-bound fructosamine 6-phosphates with a catalytic efficiency >10-fold higher than those observed with its next best substrates (arabinose 5-phosphate and free fructoselysine 6-phosphate) and >100-fold higher than with protein-phosphotyrosine. It had no detectable activity on fructosamine 3-phosphates. MDP-1 dephosphorylated up to approximately 75% of the fructosamine 6-phosphates that are present on lysozyme after incubation of this protein with Glu-6-P. Furthermore, lysozyme glycated with Glu-6-P was converted by MDP-1 to a substrate for FN3K. We conclude that MDP-1 may act physiologically in conjunction with FN3K to free proteins from the glycation products derived from Glu-6-P.  相似文献   
2.
3.
The molecular identity of mammalian phosphopentomutase has not yet been established unequivocally. That of glucose-1,6-bisphosphate synthase, the enzyme that synthesizes a cofactor for phosphomutases and putative regulator of glycolysis, is completely unknown. In the present work, we have purified phosphopentomutase from human erythrocytes and found it to copurify with a 68-kDa polypeptide that was identified by mass spectrometry as phosphoglucomutase 2 (PGM2), a protein of the alpha-d-phosphohexomutase family and sharing about 20% identity with mammalian phosphoglucomutase 1. Data base searches indicated that vertebrate genomes contained, in addition to PGM2, a homologue (PGM2L1, for PGM2-like 1) sharing about 60% sequence identity with this protein. Both PGM2 and PGM2L1 were overexpressed in Escherichia coli, purified, and their properties were studied. Using catalytic efficiency as a criterion, PGM2 acted more than 10-fold better as a phosphopentomutase (both on deoxyribose 1-phosphate and on ribose 1-phosphate) than as a phosphoglucomutase. PGM2L1 showed only low (<5%) phosphopentomutase and phosphoglucomutase activities compared with PGM2, but was about 5-20-fold better than the latter enzyme in catalyzing the 1,3-bisphosphoglycerate-dependent synthesis of glucose 1,6-bisphosphate and other aldose-bisphosphates. Furthermore, quantitative real-time PCR analysis indicated that PGM2L1 was mainly expressed in brain where glucose-1,6-bisphosphate synthase activity was previously shown to be particularly high. We conclude that mammalian phosphopentomutase and glucose-1,6-bisphosphate synthase correspond to two closely related proteins, PGM2 and PGM2L1, encoded by two genes that separated early in vertebrate evolution.  相似文献   
4.
Insect seed predation may vary depending on seed production. The present study considers the hypothesis that the rates of seed predation tend to be smaller in years of higher fruit production. Thus, we monitored the production of fruits and predation of seeds of the palm Syagrus romanzoffiana over 2?years in the Atlantic Forest (Parque Municipal da Lagoa do Peri, Florianópolis, SC, Brazil), between July 2006 and June 2008. Plots of 0.25?m2 were fitted under 20 mother plants and fruits were monthly collected for assessment of abundance and seed predation. There was variation in fruit production between the 2?years and among reproductive plants. Predation rates were high and occurred in the predispersal phase by the Curculionidae Revena rubiginosa Boheman, Anchylorhynchus aegrotus Fahraeus, and Anchylorhynchus variabilis Gyllenhal. Seed predation by these species of Anchylorhynchus is first registered in the present study. In average, about 60% of the seeds monthly produced in the population tend to escape insect predation in year of high or low production, becoming available for recruitment. The predation rate was not related to the amount of fruits produced per reproductive plant. Also, different than expected, there was a positive relation between the rates of seed predation and the total of fruits produced monthly on the plots. Thus, no evidence for the satiation of insect seed predators was found in this study with S. romanzoffiana.  相似文献   
5.
We assessed the responsiveness of six human cervical cancer cell lines to transforming growth factor (TGF)-beta with p3TP-lux reporter assay and found that HeLa and SiHa cells were highly responsive to TGF-beta. However, when pSBE4-BV/Luc reporter with four Smad binding elements was used, only the SiHa, not the HeLa, cells showed Smad activation. Smad DNA binding activity was relatively more in SiHa than in HeLa cells upon TGF-beta treatment, and the active complex contained Smad 2 and Smad 4. In 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, HeLa cells treated with 5 ng/ml of TGF-beta for 24 h showed proliferation, whereas SiHa cells showed growth inhibition under the same conditions. TGF-beta treatment resulted in G(0)/G(1) arrest with a reduction in S-phase only in SiHa cells. A chemical inhibitor of Smad activation (SB203580) blocked the growth inhibitory effect of TGF-beta in SiHa, whereas the proliferative response in HeLa was unaffected. TGF-beta-induced translocation of phospho-Smad 2 was relatively less in HeLa than in SiHa cells. MAPK activation occurred within 5 min and persisted up to 15 min upon TGF-beta treatment in HeLa but was negligible in SiHa cells. TGF-beta activated JNK in HeLa, but SiHa cells showed a down-regulation of its activity. When an inhibitor of MAPK (U0126) was used, the TGF-beta-mediated proliferative response in HeLa cells was completely abolished. SB203580 did not affect MAPK activation induced by TGF-beta in HeLa cells. We report for the first time an activation, presumably independent of Smad activation, of TGF-beta-dependent MAPK within 5 min of treatment that resulted in cell cycle progression in a cervical adenocarcinoma cell line, HeLa.  相似文献   
6.
The synthesis of N-acetylneuraminate (Neu5Ac), the main form of sialic acid, proceeds in vertebrates through the condensation of N-acetylmannosamine 6-phosphate and phosphoenolpyruvate to Neu5Ac-9-phosphate, followed by the dephosphorylation of the latter by a specific phosphatase. The sequence encoding Neu5Ac-9-phosphate phosphatase (Neu5Ac-9-Pase; E.C. 3.1.3.29) has not been determined until now. In this work, we have purified Neu5Ac-9-Pase more than 1000-fold from rat liver. Its dependency on Mg2+ and the fact that it was inhibited by vanadate and Ca2+ suggested that it belonged to the haloacid dehalogenase family of phosphatases. Trypsin digestion and mass spectrometry analysis of a polypeptide of about 30 kDa that co-eluted with the activity in the last purification step indicated the presence of a protein designated "haloacid dehalogenase-like hydrolase domain containing 4." The human ortholog of this protein is encoded by a 2-exon gene present on chromosome 20p11. The human protein was overexpressed in Escherichia coli as a fusion protein with a polyHis tag and purified to homogeneity. The recombinant enzyme displayed a >230-fold higher catalytic efficiency on Neu5Ac-9-phosphate than on its second best substrate. Its properties were similar to those of the enzyme purified from rat liver. Neu5Ac inhibited the enzymatic activity by 50% at 15 mM, indicating that no significant inhibition is exerted at physiological concentrations of Neu5Ac. The identification of the gene encoding Neu5Ac-9-Pase will facilitate studies aimed at testing its potential implication in unexplained forms of glycosylation deficiency.  相似文献   
7.
There has been considerable interest recently in the application of bagging in the classification of both gene-expression data and protein-abundance mass spectrometry data. The approach is often justified by the improvement it produces on the performance of unstable, overfitting classification rules under small-sample situations. However, the question of real practical interest is whether the ensemble scheme will improve performance of those classifiers sufficiently to beat the performance of single stable, nonoverfitting classifiers, in the case of small-sample genomic and proteomic data sets. To investigate that question, we conducted a detailed empirical study, using publicly-available data sets from published genomic and proteomic studies. We observed that, under t-test and RELIEF filter-based feature selection, bagging generally does a good job of improving the performance of unstable, overfitting classifiers, such as CART decision trees and neural networks, but that improvement was not sufficient to beat the performance of single stable, nonoverfitting classifiers, such as diagonal and plain linear discriminant analysis, or 3-nearest neighbors. Furthermore, as expected, the ensemble method did not improve the performance of these classifiers significantly. Representative experimental results are presented and discussed in this work.  相似文献   
8.
9.
Cell migration and invasion requires the precise temporal and spatial orchestration of a variety of biological processes. Filaments of polymerized actin are critical players in these diverse processes, including the regulation of cell anchorage points (both cell-cell and cell-extracellular matrix), the uptake and delivery of molecules via endocytic pathways and the generation of force for both membrane protrusion and retraction. How the actin filaments are specialized for each of these discrete functions is yet to be comprehensively elucidated. The cytoskeletal tropomyosins are a family of actin associating proteins that form head-to-tail polymers which lay in the major groove of polymerized actin filaments. In the present review we summarize the emerging isoform-specific functions of tropomyosins in cell migration and invasion and discuss their potential roles in the specialization of actin filaments for the diverse cellular processes that together regulate cell migration and invasion.Key words: tropomyosin, actin, migration, invasion, cytoskeleton, actin dynamics, adhesionActin is the most abundant protein in eukaryotic cells and is critical for maintaining structural integrity. The polymerization of globular (G)-actin monomers forms actin filaments (F-actin),1 which play a role in diverse and complex cellular functions including intercellular transport of organelles and vesicles,2,3 cytokinesis,4 apoptosis5 and cell motility.6 Intricate details describing the molecular scale interactions between regulatory proteins and actin have been extensively investigated but the mechanistic control of diverse actin filament functions remain largely unclear. Recent improvements in analysis techniques7 and the use of physiologically relevant models of 3D cell culturing8 have now begun to reveal mechanisms of actin cytoskeleton regulation. Accruing evidence suggests that the actin decorating protein tropomyosin is a key regulator of actin filament specialization. Of particular interest is the impact that tropomyosin regulation has on actin filament activity during cell migration and invasion that underpins immunological cell homing, development, wound healing and metastasis.  相似文献   
10.

Background  

Genetic diversity of the human immunodeficiency virus type 1 (HIV-1) population within an individual is lost during transmission to a new host. The demography of transmission is an important determinant of evolutionary dynamics, particularly the relative impact of natural selection and genetic drift immediately following HIV-1 infection. Despite this, the magnitude of this population bottleneck is unclear.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号