首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   1篇
  27篇
  2018年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   5篇
  2009年   1篇
  2008年   4篇
  2007年   2篇
  2006年   5篇
  2005年   3篇
  1992年   1篇
  1976年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
1.
2.
The quantitative traits of mass and percentage of abdominal fat in chicken and various types of obesity in mammals are homologous and functionally similar. Therefore, the genes involved in obesity development in humans and laboratory rodents as well as those responsible for pig lard thickness could be involved in abdominal fat deposition in broilers. Expression of candidate genes FABP1, FABP2, FABP3, HMGA1, MC4R, PPARG, PPARGC1A, POMC and PTPN1 was studied in fat, liver, colon, muscle, pituitary gland, and brain in chicken (broilers) using real-time PCR. Significant difference in the HMGA1 gene expression in the liver of broiler chicken with high (3.5 ± 0.18%) and low (1.9 ± 0.56%) abdominal fat concentration has been revealed. The expression of this gene was been shown to correlate with the amount (0.7, P ≤ 0.01) and mass (0.7, P ≤ 0.01) of abdominal fat. The PPARG gene expression in liver in the same chicken subsets was also significantly different. Correlation coefficients of the gene expression with the abdominal fat amount and mass were respectively 0.55 (P ≤ 0.05) and 0.57 (P ≤ 0.01). Based on these results, we suggest that the HMGA1 and PPARG genes are involved in abdominal fat deposition. The search for single nucleotide polymorphisms (SNPs) in the HMGA and PPARG regulatory regions could facilitate identifying genetic markers for broiler breeding according to the mass and percentage of abdominal fat.  相似文献   
3.
Ten evolutionary conservative sequences with high identity level to homological sequences in other mammal species were revealed in 5'-flanking region of casein's genes cluster. Five novel SNPs located inside of the evolutionary conservative regions were identified. The binding sites were revealed to be present in one allelic variant of four detected SNPs. So these SNPs were considered as rSNPs. Significant differences of allelic frequencies were revealed between beef cow's group and dairy cow's group in two rSNPs (NCE4, NCE7, p<0.001). Different alleles of those two rSNPs were shown to be associated with some milk performance traits in Black-and-White Holstein dairy cows. Significant difference of protein percentage has been found between cows with G/G and A/A genotypes (P<0.05) and A/G and A/A genotypes (P<0.05) for NCE4 polymorphism. The groups of animals with genotypes G/G and A/G for NCE7 polymorphism were significantly different in milk yield at the first lactation (kg) (P<0.01), milk fat yield (kg) (P<0.05) and milk protein yield (kg) (P<0.01). For the last trait the difference was significant also between cows with genotypes G/G and A/A for rSNP NCE7 (P<0.05).  相似文献   
4.
Data exists showing that seasonal changes in the innervations of GnRH cells in the hypothalamus and functions of some neural systems affecting GnRH neurons are associated with GnRH release in ewes. Consequently, we put the question as to how the expression of GnRH gene and GnRH-R gene in the hypothalamus and GnRH-R gene in the anterior pituitary gland is reflected with LH secretion in anestrous and luteal phase ewes. Analysis of GnRH gene expression by RT-PCR in anestrous ewes indicated comparable levels of GnRH mRNA in the preoptic area, anterior and ventromedial hypothalamus. GnRH-R mRNA at different concentrations was found throughout the preoptic area, anterior and ventromedial hypothalamus, stalk/median eminence and in the anterior pituitary gland. The highest GnRH-R mRNA levels were detected in the stalk/median eminence and in the anterior pituitary gland.During the luteal phase of the estrous cycle in ewes, the levels of GnRH mRNA and GnRH-R mRNA in all structures were significantly higher than in anestrous ewes. Also LH concentrations in blood plasma of luteal phase ewes were significantly higher than those of anestrous ewes.In conclusion, results from this study suggest that low expression of the GnRH and GnRH-R genes in the hypothalamus and of the GnRH-R gene in the anterior pituitary gland, amongst others, may be responsible for a decrease in LH secretion and the anovulatory state in ewes during the long photoperiod.  相似文献   
5.
The effect of prolonged, intermittent infusion of GABA(A) receptor agonist (muscimol) or GABA(A) receptor antagonist (bicuculline) into the third cerebral ventricle on the expression of GnRH gene and GnRH-R gene in the hypothalamus and GnRH-R gene in the anterior pituitary gland was examined in follicular-phase ewes by real-time PCR. The activation or inhibition of GABA(A) receptors in the hypothalamus decreased or increased the expression of GnRH and GnRH-R genes and LH secretion, respectively. The present results indicate that the GABAergic system in the hypothalamus of follicular-phase ewes may suppress, via hypothalamic GABA(A) receptors, the expression of GnRH and GnRH-R genes in this structure. The decrease or increase of GnRH-R mRNA in the anterior pituitary gland and LH secretion in the muscimol- or bicuculline-treated ewes, respectively, is probably a consequence of parallel changes in the release of GnRH from the hypothalamus activating GnRH-R gene expression. It is suggested that GABA acting through the GABA(A) receptor mechanism on the expression of GnRH gene and GnRH-R gene in the hypothalamus may be involved in two processes: the biosynthesis of GnRH and the release of this neurohormone in the hypothalamus.  相似文献   
6.
Bovine lactoferrin (LTF) is a multifunctional small glycoprotein found in milk acting mainly as a defense factor in the mammary gland. Many polymorphisms have been found in the bovine LTF gene but almost none were considered as genetic markers of production traits in dairy cattle. In this study, the promoter fragment of LTF gene containing mutation (G/C) in position +32 has been amplified by PCR followed by genotyping by the SSCP and RFLP method. 358 Polish Holstein-Friesian cows were screened, giving the following frequency of genotypes: 0.628, 0.313 and 0.059 for GG, GC and CC, respectively. GLM (General Linear Model) analysis was applied to evaluate the associations of lactoferrin with milk performance traits, including SCC - somatic cell count. It was found that CC cows show significantly higher (P < or = 0.01) protein content in milk in comparison with GG cows. The values of other milk performance traits were also higher but at non-significant levels. SCC in milk was the lowest in CC cows, but also at a non-significant level.  相似文献   
7.
8.
Bovine lactoferrin (LTF) is a multifunctional small glycoprotein found in milk acting mainly as a defense factor in the mammary gland. Many polymorphisms have been found in the bovine LTF gene but almost none were considered as genetic markers of production traits in dairy cattle. In this study, the promoter fragment of LTF gene containing mutation (G/C) in position +32 has been amplified by PCR followed by genotyping by the SSCP and RFLP method. Three hundred fifty-eight Polish Holstein-Friesian cows were screened, giving the following frequency of genotypes: 0.628, 0.313 and 0.059 for GG, GC and CC, respectively. GLM (General Linear Model) analysis was applied to evaluate the associations of lactoferrin with milk performance traits, including SCC (somatic cell count). It was found that CC cows show significantly higher (P ≤ 0.01) protein content in milk in comparison with GG cows. The values of other milk performance traits were also higher but at nonsignificant levels. SCC in milk was the lowest in CC cows, but also at a nonsignificant level. The text was submitted by the authors in English.  相似文献   
9.
Nineteen BAC clones were identified by hybridization of the bovine genomic BAC library CHORI-240 with mixedCSN1S1- andCSN3-specific probes. Two of the clones were shown to contain the genesCSN1S1, CSN1S2, CSN2, STATH andCSN3, and five were proved to include the genesCSN2, STATH, CSN1S2 andCSN3. These data showed that the BAC contig was established for the whole casein cluster, including all known five genes.  相似文献   
10.
Double-color fluorescence in situ hybridization was performed on chicken chromosomes using seven unique clones from the human chromosome 3-specific NotI linking libraries. Six of them (NL1-097, NL2-092, NL2-230, NLM-007, NLM-118, and NLM-196) were located on the same chicken microchromosome and NL1-290 on another. Two chicken microchromosome GGA15-specific BAC clones, JE024F14 containing the IGVPS gene and JE020G17 containing the ALDH1A1 gene, were cytogenetically mapped to the same microchromosome that carried the six NotI linking clones, allowing identification of this chromosome as GGA15. Two GGA14-specific clones, JE027C23 and JE014E08 containing the HBA gene cluster, were co-localized on the same microchromosome as NL1-290, suggesting that this chromosome was GGA14. The results indicated that the human chromosomal region HSA3q13-->q23 is likely to be orthologous to GGA15 and GGA14. The breakpoint of evolutionary conservation of human and chicken chromosomes was detected on HSA3q13.3-->q23 between NL1-290, on the one hand, and six other NotI clones, on the other hand. Considering the available chicken-human comparative mapping data, another breakpoint appears to exist between the above NotI loci and four other genes, TFRC, EIF4A2, SKIL and DHX36 located on HSA3q24-->qter and GGA9. Based on human sequences within the NotI clones, localization of the six new chicken coding sequences orthologous to the human/rodent genes was suggested to be on GGA15 and one on GGA14. Microchromosomal location of seven NotI clones from the HSA3q21 T-band region can be considered as evidence in support of our hypothesis about the functional analogy of mammalian T-bands and avian microchromosomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号