首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   1篇
  2019年   1篇
  2018年   1篇
  2015年   2篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2008年   1篇
  2007年   3篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   4篇
排序方式: 共有24条查询结果,搜索用时 34 毫秒
1.
The present study underlines the importance of PI3K in mediating the anti-inflammatory effect of gemfibrozil, a prescribed lipid-lowering drug for humans, in mouse microglia. Gemfibrozil inhibited LPS-induced expression of inducible NO synthase (iNOS) and proinflammatory cytokines in mouse BV-2 microglial cells and primary microglia. By overexpressing wild-type and dominant-negative constructs of peroxisome proliferator-activated receptor-alpha (PPAR-alpha) in microglial cells and isolating primary microglia from PPAR-alpha-/- mice, we have demonstrated that gemfibrozil inhibits the activation of microglia independent of PPAR-alpha. Interestingly, gemfibrozil induced the activation of p85alpha-associated PI3K (p110beta but not p110alpha) and inhibition of that PI3K by either chemical inhibitors or dominant-negative mutants abrogated the inhibitory effect of gemfibrozil. Conversely, overexpression of the constitutively active mutant of p110 enhanced the inhibitory effect of gemfibrozil on LPS-induced expression of proinflammatory molecules. Similarly, gemfibrozil also inhibited fibrillar amyloid beta (Abeta)-, prion peptide (PrP)-, dsRNA (poly IC)-, HIV-1 Tat-, and 1-methyl-4-phenylpyridinium (MPP+)-, but not IFN-gamma-, induced microglial expression of iNOS. Inhibition of PI3K also abolished the inhibitory effect of gemfibrozil on Abeta-, PrP-, poly IC-, Tat-, and MPP+-induced microglial expression of iNOS. Involvement of NF-kappaB activation in LPS-, Abeta-, PrP-, poly IC-, Tat-, and MPP+-, but not IFN-gamma-, induced microglial expression of iNOS and stimulation of IkappaBalpha expression and inhibition of NF-kappaB activation by gemfibrozil via the PI3K pathway suggests that gemfibrozil inhibits the activation of NF-kappaB and the expression of proinflammatory molecules in microglia via PI3K-mediated up-regulation of IkappaBalpha.  相似文献   
2.
3.
An increase in central nervous system (CNS) remyelination and a decrease in CNS inflammation are important steps to halt the progression of multiple sclerosis (MS). RNS60 is a bioactive aqueous solution generated by subjecting normal saline to Taylor–Couette–Poiseuille flow under elevated oxygen pressure. Recently we have demonstrated that RNS60 exhibits anti-inflammatory properties. Here, we describe promyelinating property of RNS60. RNS60, but not normal saline (NS), RNS10.3 (TCP-modified saline without excess oxygen) or PNS60 (saline containing excess oxygen without TCP modification), stimulated the expression of myelin-specific genes and proteins (myelin basic protein, MBP; myelin oligodendrocyte glycoprotein, MOG and proteolipid protein, PLP) in primary mouse oligodendroglia and mixed glial cells. While investigating the mechanisms, we found that RNS60 treatment induced the activation of cAMP response element binding protein (CREB) in oligodendrocytes, ultimately leading to the recruitment of CREB to the promoters of myelin-specific genes. Furthermore, activation of type 1A p110β/α, but not type 1B p110γ, phosphatidylinositol-3 (PI-3) kinase by RNS60 together with abrogation of RNS60-mediated activation of CREB and upregulation of myelin genes by LY294002 (a specific inhibitor of PI-3 kinase) suggest that RNS60 upregulates the activation of CREB and the expression of myelin-specific molecules in oligodendrocytes via activation of PI3 kinase. These results highlight a novel promyelinating property of RNS60, which may be of benefit for MS and other demyelinating disorders.  相似文献   
4.
The presence of neuroantigen-primed T cells recognizing self-myelin antigens within the CNS is necessary for the development of demyelinating autoimmune disease like multiple sclerosis. This study was undertaken to investigate the role of myelin basic protein (MBP)-primed T cells in the expression of proinflammatory cytokines in microglial cells. MBP-primed T cells alone induced specifically the microglial expression of interleukin (IL)-1beta, IL-1alpha tumor necrosis factor alpha, and IL-6, proinflammatory cytokines that are primarily involved in the pathogenesis of MS. This induction was primarily dependent on the contact between MBP-primed T cells and microglia. The activation of microglial NF-kappaB and CCAAT/enhancer-binding protein beta (C/EBPbeta) by MBP-primed T cell contact and inhibition of contact-mediated microglial expression of proinflammatory cytokines by dominant-negative mutants of p65 and C/EBPbeta suggest that MBP-primed T cells induce microglial expression of cytokines through the activation of NF-kappaB and C/EBPbeta. In addition, we show that MBP-primed T cells express very late antigen-4 (VLA-4), and functional blocking antibodies to alpha4 chain of VLA-4 (CD49d) inhibited the ability of MBP-primed T cells to induce microglial proinflammatory cytokines. Interestingly, the blocking of VLA-4 impaired the ability of MBP-primed T cells to induce microglial activation of only C/EBPbeta but not that of NF-kappaB. This study illustrates a novel role of VLA-4 in regulating neuroantigen-primed T cell-induced activation of microglia through C/EBPbeta  相似文献   
5.
6.
Jana M  Jana A  Pal U  Pahan K 《Neurochemical research》2007,32(12):2015-2022
Elucidation of the underlying pathogenic mechanisms leading to apoptosis of neurons and oligodendrocytes and activation of microglia and astrocytes in different neurodegenerative and neuroinflammatory disorders remains a challenge in neuroscience. In order to overcome the challenge and find out therapeutic remedies, it is important to study live and death processes in each and every cell type of the brain. Here we present a protocol of isolating highly purified microglia, astrocytes, oligodendrocytes, and neurons, all four major cell types of the CNS, from the same human fetal brain tissue. As found in vivo, these primary neurons and oligodendroglia underwent apoptosis and cell death in response to neurodegenerative challenges. On the other hand, astroglia, and microglia, cells that do not die in neurodegenerative brains, became activated after inflammatory challenge. The availability of highly purified human brain cells will increase the possibility of developing therapies for different neurodegenerative disorders. M. Jana and A. Jana have equal contribution to the work.  相似文献   
7.
Microglial activation is an important pathological component in brains of patients with Alzheimer's disease (AD), and fibrillar amyloid-beta (Abeta) peptides play an important role in microglial activation in AD. However, mechanisms by which Abeta peptides induce the activation of microglia are poorly understood. The present study underlines the importance of TLR2 in mediating Abeta peptide-induced activation of microglia. Fibrillar Abeta1-42 peptides induced the expression of inducible NO synthase, proinflammatory cytokines (TNF-alpha, IL-1beta, and IL-6), and integrin markers (CD11b, CD11c, and CD68) in mouse primary microglia and BV-2 microglial cells. However, either antisense knockdown of TLR2 or functional blocking Abs against TLR2 suppressed Abeta1-42-induced expression of proinflammatory molecules and integrin markers in microglia. Abeta1-42 peptides were also unable to induce the expression of proinflammatory molecules and increase the expression of CD11b in microglia isolated from TLR2(-/-) mice. Finally, the inability of Abeta1-42 peptides to induce the expression of inducible NO synthase and to stimulate the expression of CD11b in vivo in the cortex of TLR2(-/-) mice highlights the importance of TLR2 in Abeta-induced microglial activation. In addition, ligation of TLR2 alone was also sufficient to induce microglial activation. Consistent to the importance of MyD88 in mediating the function of various TLRs, antisense knockdown of MyD88 also inhibited Abeta1-42 peptide-induced expression of proinflammatory molecules. Taken together, these studies delineate a novel role of TLR2 signaling pathway in mediating fibrillar Abeta peptide-induced activation of microglia.  相似文献   
8.
9.
Purified α-amylase from a soil bacterium Bacillus sp. SKB4 was immobilized on coconut coir, an inexpensive cellulosic fiber, with the cross-linking agent glutaraldehyde. The catalytic properties and stability of the immobilized enzyme were compared with those of its soluble form. The enzyme retained 97.2% of its activity and its catalytic properties were not drastically altered after immobilization. The pH optimum and stability of the immobilized enzyme were shifted towards the alkaline range compared to the free enzyme. The optimum temperature for enzymatic activity was 90°C in both forms of the enzyme. The soluble and immobilized enzyme retained 19% and 70% of original activity, respectively, after pre-incubation for 1 h at 90°C. Immobilized amylase was less susceptible to attack by heavy metal ions and showed higher Km and Vmax values than its free form. The bound enzyme showed significant activity and stability after 6 months of storage at 4°C. All of these characteristics make the new carrier system suitable for use in the bioprocess and food industries.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号