首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   6篇
  2021年   1篇
  2020年   3篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   7篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   4篇
  2008年   3篇
  2007年   5篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   4篇
  1970年   1篇
排序方式: 共有55条查询结果,搜索用时 15 毫秒
1.
Natural patterns of cooperative sentinel behaviour in Arabian babblers, Turdoides squamiceps, have proven consistent with state-dependent models of individually selfish anti-predator strategies. Here we demonstrate experimentally that sentinel effort within groups is determined simply by individual state. The two highest-ranking males in eight groups were separately fed a supplement of mealworms, each for one day at a time. Control days before and after each treatment confirmed that no carry-over effects occurred, and that most normal sentinel activity was carried out by alpha males, then beta males and then by the rest of the group. When supplemented, both alpha and beta males exhibited similar marked increases in sentinel activity, relative to control days. Unsupplemented males and the rest of the group incompletely compensated for these increases with reductions in sentinel effort. Differences in individual body mass within groups reflected natural and experimental variation in sentinel effort. Alpha and beta males weighed more than other group members, and gained mass only when supplementally fed. There was no evidence either for competitive sentinel behaviour, nor for any increased interference between males during the supplementation treatments. These results therefore provide strong evidence in support of the state-dependent approach to cooperative sentinel behaviour.  相似文献   
2.
3.
Males and females have different routes to successful reproduction, resulting in sex differences in lifespan and age-specific allocation of reproductive effort. The trade-off between current and future reproduction is often resolved differently by males and females, and both sexes can be constrained in their ability to reach their sex-specific optima owing to intralocus sexual conflict. Such genetic antagonism may have profound implications for evolution, but its role in ageing and lifespan remains unresolved. We provide direct experimental evidence that males live longer and females live shorter than necessary to maximize their relative fitness in Callosobruchus maculatus seed beetles. Using artificial selection in a genetically heterogeneous population, we created replicate long-life lines where males lived on average 27 per cent longer than in short-life lines. As predicted by theory, subsequent assays revealed that upward selection on male lifespan decreased relative male fitness but increased relative female fitness compared with downward selection. Thus, we demonstrate that lifespan-extending genes can help one sex while harming the other. Our results show that sexual antagonism constrains adaptive life-history evolution, support a novel way of maintaining genetic variation for lifespan and argue for better integration of sex effects into applied research programmes aimed at lifespan extension.  相似文献   
4.
5.
Diet affects both lifespan and reproduction [1-9], leading to the prediction that the contrasting reproductive strategies of the sexes should result in sex-specific effects of nutrition on fitness and longevity [6, 10] and favor different patterns of nutrient intake in males and females. However, males and females share most of their genome and intralocus sexual conflict may prevent sex-specific diet optimization. We show that both male and female longevity were maximized on a high-carbohydrate low-protein diet in field crickets Teleogryllus commodus, but male and female lifetime reproductive performances were maximized in markedly different parts of the nutrient intake landscape. Given a choice, crickets exhibited sex-specific dietary preference in the direction that increases reproductive performance, but this sexual dimorphism in preference was incomplete, with both sexes displaced from the optimum diet for lifetime reproduction. Sexes are, therefore, constrained in their ability to reach their sex-specific dietary optima by the shared biology of diet choice. Our data suggest that sex-specific selection has thus far failed fully to resolve intralocus sexual conflict over diet optimization. Such conflict may be an important factor linking nutrition and reproduction to lifespan and aging.  相似文献   
6.
Intralocus sexual conflict (IaSC) occurs when selection at a given locus favors different alleles in males and females, placing a fundamental constraint on adaptation. However, the relative impact of IaSC on adaptation may become reduced in stressful environments that expose conditionally deleterious mutations to selection. The genetic correlation for fitness between males and females (rMF) provides a quantification of IaSC across the genome. We compared IaSC at a benign (29°C) and a stressful (36°C) temperature by estimating rMFs in two natural populations of the seed beetle Callosobruchus maculatus using isofemale lines. In one population, we found substantial IaSC under benign conditions signified by a negative rMF (?0.51) and, as predicted, a significant reduction of IaSC under stress signified by a reversed and positive rMF (0.21). The other population displayed low IaSC at both temperatures (rMF: 0.38; 0.40). In both populations, isofemale lines harboring alleles beneficial to males but detrimental to females at benign conditions tended to show overall low fitness under stress. These results offer support for low IaSC under stress and suggest that environmentally sensitive and conditionally deleterious alleles that are sexually selected in males mediate changes in IaSC. We discuss implications for adaptive evolution in sexually reproducing populations.  相似文献   
7.
8.
Sexual selection in general, and sexual conflict in particular, should affect the evolution of lifespan and aging. Using experimental evolution, we tested whether removal of sexual selection leads to the evolution of accelerated or decelerated senescence. We subjected replicated populations of the seed beetle Callosobruchus maculatus to either of two selection regimes for 35 generations. These regimes either allowed (polygamy) or removed the potential (monogamy) for sexual selection to operate. To test for the evolution of intrinsic differences between the two selection regimes, we assayed longevity in replicate cohorts of virgin females and males. Virgin females from populations evolving under sexual selection had reduced lifespan as predicted by the sexual conflict theory of aging. However, this reduction was due to increased baseline mortality rather than an increase in age-specific mortality rates with age. We discuss these findings in light of other data from this model system and suggest that system-specific idiosyncrasies may often modulate the general effects of male–female coevolution on the evolution of aging.  相似文献   
9.
Life-history (LH) theory predicts that selection will optimize the trade-off between reproduction and somatic maintenance. Reproductive ageing and finite life span are direct consequences of such optimization. Sexual selection and conflict profoundly affect the reproductive strategies of the sexes and thus can play an important role in the evolution of life span and ageing. In theory, sexual selection can favor the evolution of either faster or slower ageing, but the evidence is equivocal. We used a novel selection experiment to investigate the potential of sexual selection to influence the adaptive evolution of age-specific LH traits. We selected replicate populations of the seed beetle Callosobruchus maculatus for age at reproduction ("Young" and "Old") either with or without sexual selection. We found that LH selection resulted in the evolution of age-specific reproduction and mortality but these changes were largely unaffected by sexual selection. Sexual selection depressed net reproductive performance and failed to promote adaptation. Nonetheless, the evolution of several traits differed between males and females. These data challenge the importance of current sexual selection in promoting rapid adaptation to environmental change but support the hypothesis that sex differences in LH—a historical signature of sexual selection—are key in shaping trait responses to novel selection.  相似文献   
10.
Although there is continuing debate about whether sexual selection promotes or impedes adaptation to novel environments, the role of mating behavior in such adaptation remains largely unexplored. We investigated the evolution of mating behavior (latency to mating, mating probability and duration) in replicate populations of seed beetles Callosobruchus maculatus subjected to selection on life‐history (“Young” vs. “Old” reproduction) under contrasting regimes of sexual selection (“Monogamy” vs. “Polygamy”). Life‐history selection is predicted to favor delayed mating in “Old” females, but sexual conflict under polygamy can potentially retard adaptive life‐history evolution. We found that life‐history selection yielded the predicted changes in mating behavior, but sexual selection regime had no net effect. In within‐line crosses, populations selected for late reproduction showed equally reduced early‐life mating probability regardless of mating system. In between‐line crosses, however, the effect of life‐history selection on early‐life mating probability was stronger in polygamous lines than in monogamous ones. Thus, although mating system influenced male–female coevolution, removal of sexual selection did not affect the adaptive evolution of mating behavior. Importantly, our study shows that the interaction between sexual selection and life‐history selection can result in either increased or decreased reproductive divergence depending on the ecological context.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号