首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  国内免费   1篇
  2023年   1篇
  2014年   1篇
  2013年   2篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   4篇
  2005年   1篇
  2004年   1篇
排序方式: 共有15条查询结果,搜索用时 31 毫秒
1.
In the natural environment, plants are exposed to different stress factors that are responsible for overproduction of reactive oxygen species. Exposure to heavy metals is one of these factors. The present article highlights the correlation between the effects of bioaccumulation of heavy metals in a highly polluted region as the industrial zone of the Thermo Power Plants “Kosova” in Kosovo on the antioxidant capacity of two selected target species: Solanum tuberosum L. and Allium cepa L. The results show that environmental pollution in the industrial zone of the Thermo Power Plants “Kosova” generates a significant bioaccumulation of heavy metals such as Pb, Cd, Zn, Mn, and Fe. The high concentration of heavy metals leads to an increased production of reactive radical species. The extracts of target plants cultivated in this region display a lower antioxidant capacity than the same plants grown in a control rural area. The Fe bioaccumulation markedly influences the antioxidant capacity of plant samples analyzed.  相似文献   
2.
Hemorrhagic fever with renal syndrome (HFRS) is a disease caused by viruses of the family Bunyaviridae,genus Hantavirus.HFRS from Dobrava virus (DOBV) is a seldom reported disease in Albania.Clinically HFRS is manifested as mild,moderate,or severe.Therefore,the number of cases of Hantavirus' infection may be underestimated,and should be included in the differential diagnosis of many acute infections,hematologic diseases,acute abdominal diseases and renal diseases complicated by acute renal failure.We report...  相似文献   
3.
A novel computational approach, termed Search for Modified Peptides (SeMoP), for the unrestricted discovery and verification of peptide modifications in shotgun proteomic experiments using low resolution ion trap MS/MS spectra is presented. Various peptide modifications, including post-translational modifications, sequence polymorphisms, as well as sample handling-induced changes, can be identified using this approach. SeMoP utilizes a three-step strategy: (1) a standard database search to identify proteins in a sample; (2) an unrestricted search for modifications using a newly developed algorithm; and (3) a second standard database search targeted to specific modifications found using the unrestricted search. This targeted approach provides verification of discovered modifications and, due to increased sensitivity, a general increase in the number of peptides with the specific modification. The feasibility of the overall strategy has been first demonstrated in the analysis of 65 plasma proteins. Various sample handling induced modifications, such as beta-elimination of disulfide bridges and pyrocarbamidomethylation, as well as biologically induced modifications, such as phosphorylation and methylation, have been detected. A subsequent targeted Sequest search has been used to verify selected modifications, and a 4-fold increase in the number of modified peptides was obtained. In a second application, 1367 proteins of a cervical cancer cell line were processed, leading to detection of several novel amino acid substitutions. By conducting the search against a database of peptides derived from proteins with decoy sequences, a false discovery rate of less than 5% for the unrestricted search resulted. SeMoP is shown to be an effective and easily implemented approach for the discovery and verification of peptide modifications.  相似文献   
4.
5.
Embryonic stem cells (ESCs) are derived from the inner cell mass of the preimplantation stage embryo and are capable of prolonged symmetrical self-renewal (both daughter cells remain escs) as well as differentiation into derivatives of all three embryonic germ layers. ESCs therefore have the potential to provide an unlimited supply of transplantable cells to replace or regenerate damaged or diseased tissues. However, several barriers must be overcome before successful clinical trials are possible: for example, pure populations of the desired cell type need to be selected and expanded in clinically relevant numbers, and a method for preventing immunological rejection of the transplanted cells without long-term immunosuppressive therapy is also required. In this review, we highlight recent developments in human ESC derivation and expansion, outline current understanding of the signalling pathways underlying stem cell renewal, and discuss challenging problems related to the selective differentiation and immune properties of human ESCs.  相似文献   
6.
Limbal stem cell deficiency is a blinding disease which affects the cornea at the front of the eye. The definitive cure involves replacing the corneal epithelial (limbal) stem cells, for example by transplanting cultured limbal epithelial cells. One method of performing cultures is to grow a sheet of epithelial cells from a limbal explant on human amniotic membrane. The growth of limbal tissue can be variable. The aim of this study is to investigate how different donor and culture factors influence the ex vivo growth of cadaveric limbal explants. Limbal explant cultures were established from 10 different cadaveric organ cultured corneo‐scleral discs. The growth rate and the time taken for growth to be established were determined. Statistical analysis was performed to assess correlation between these factors and donor variables including donor age, sex, time from donor death to enucleation, time from enucleation to organ culture storage and duration in organ culture. Growth curves consistently showed a lag phase followed by a steeper linear growth phase. Donor age, time between death and enucleation, and time between enucleation and organ culture were not correlated to the lag time or the growth rate. Time in organ culture had a significant correlation with the duration of lag time (P = 0.003), but no relationship with the linear growth rate. This study shows that an important factor correlating with growth variation is the duration of corneo‐scleral tissue in organ culture. Interestingly, donor age was not correlated with limbal explant growth. J. Cell. Physiol. © 2012 Wiley Periodicals, Inc.  相似文献   
7.
Bone remodeling is a tightly controlled mechanism in which osteoblasts (OB), the cells responsible for bone formation, osteoclasts (OC), the cells specialized for bone resorption, and osteocytes, the multifunctional mechanosensing cells embedded in the bone matrix, are the main actors. Increased oxidative stress in OB, the cells producing and mineralizing bone matrix, has been associated with osteoporosis development but the role of autophagy in OB has not yet been addressed. This is the goal of the present study. We first show that the autophagic process is induced in OB during mineralization. Then, using knockdown of autophagy-essential genes and OB-specific autophagy-deficient mice, we demonstrate that autophagy deficiency reduces mineralization capacity. Moreover, our data suggest that autophagic vacuoles could be used as vehicles in OB to secrete apatite crystals. In addition, autophagy-deficient OB exhibit increased oxidative stress and secretion of the receptor activator of NFKB1 (TNFSF11/RANKL), favoring generation of OC, the cells specialized in bone resorption. In vivo, we observed a 50% reduction in trabecular bone mass in OB-specific autophagy-deficient mice. Taken together, our results show for the first time that autophagy in OB is involved both in the mineralization process and in bone homeostasis. These findings are of importance for mineralized tissues which extend from corals to vertebrates and uncover new therapeutic targets for calcified tissue-related metabolic pathologies.  相似文献   
8.

Introduction

Glycoproteomics is undergoing rapid development, largely as a result of advances in technologies for isolating glycoproteins and analyzing glycan structures. However, given the number and diversity of glycans, there is need for new technologies that can more rapidly provide differential carbohydrate–protein structural information on a large scale. We describe a new microarray platform based on a label-free imaging ellipsometry technique, which permits simultaneous detection of multiple glycoprotein–lectin interactions without the need for reporter labels, while still providing high throughput kinetic information at much lower cost. Our results demonstrate the utility of LFIRE? (Label-Free Internal Reflection Ellipsometry) for the rapid kinetic screening of carbohydrate–lectin recognition. The technology was also used to evaluate the benefits of the lectin immobilization format using multi-lectin affinity chromatography (M-LAC) to capture glycoproteins (with enhanced binding strength or avidity) from biological samples. Using a printed panel of lectins, singly or in combination, we examined the binding characteristics of standard glycoproteins.

Results and Discussion

Using kinetic measurements, it was observed that the binding strength of lectins to carbohydrates is enhanced using a multi-lectin strategy, suggesting that improved selectivity and specificity can lead to increased functional avidity. The data presented confirm that this label-free technology can be used to effectively screen single or combinations of lectins. Furthermore, the combination of LFIRE? and M-LAC may permit more rapid and sensitive identification of novel biomarkers based on carbohydrate changes in glycoproteins, and lead to a better understanding of the connections of glycan function in cellular mechanisms of health and disease.  相似文献   
9.
Pluripotent mouse embryonic stem (mES) cells derived from the blastocyst of the preimplantation embryo can be induced to differentiate in vitro along different cell lineages. However the molecular and cellular factors that signal and/or determine the expression of key genes, and the localisation of the encoded proteins, during the differentiation events are poorly understood. One common mechanism by which proteins can be targeted to specific regions of the cell is through the asymmetric localisation of mRNAs and Staufen, a double-stranded RNA binding protein, is known to play a direct role in mRNA transport and localisation. The aims of the present study were to describe the expression of Staufen in preimplantation embryos and mES cells and to use RNA interference (RNAi) to investigate the roles of Staufen1 in mES cell lineage differentiation. Western blotting and immunocytochemistry demonstrated that Staufen is present in the preimplantation mouse embryo, pluripotent mES cells and mES cells stimulated to differentiate into embryoid bodies, but the Staufen staining patterns did not support asymmetric distribution of the protein. Knockdown of Staufen1 gene expression in differentiating mES cells reduced the synthesis of lineage-specific markers including Brachyury, alpha-fetoprotein (AFP), PAX-6, and Vasa. There was however no significant change in either the gene expression of Nanog and Oct4, or in the synthesis of SSEA-1, all of which are key markers of pluripotency. These data indicate that inhibition of Staufen1 gene expression by RNAi affects an early step in mES cell differentiation and suggest a key role for Staufen in the cell lineage differentiation of mES cells.  相似文献   
10.
The cornea is the clear tissue at the front of the eye which enables the transmission of light to the retina for normal vision. The surface of the cornea is composed of an epithelium which is renewed by stem cells located at the periphery of the cornea, a region known as the limbus. These limbal stem cells can become deficient as a result of various diseases of the eye's surface, resulting in the blinding disease of limbal stem cell deficiency. The treatment of this disease is often difficult and complex. In 1997, it was proposed that a small amount of limbal tissue containing limbal stem cells could be culture expanded and then transplanted. Since then various case reports and case series have been reported showing promising results. Here, we review the outcomes of this procedure over the past 13 years with the aim of highlighting the best culture and surgical techniques to date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号