首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   2篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2015年   1篇
  2014年   1篇
  2012年   2篇
  2011年   2篇
  2008年   4篇
  2007年   1篇
  1991年   1篇
  1983年   1篇
排序方式: 共有16条查询结果,搜索用时 182 毫秒
1.
Retrotransposons and their remnants often constitute more than 50% of higher plant genomes. Although extensively studied in monocot crops such as maize (Zea mays) and rice (Oryza sativa), the impact of retrotransposons on dicot crop genomes is not well documented. Here, we present an analysis of retrotransposons in soybean (Glycine max). Analysis of approximately 3.7 megabases (Mb) of genomic sequence, including 0.87 Mb of pericentromeric sequence, uncovered 45 intact long terminal repeat (LTR)-retrotransposons. The ratio of intact elements to solo LTRs was 8:1, one of the highest reported to date in plants, suggesting that removal of retrotransposons by homologous recombination between LTRs is occurring more slowly in soybean than in previously characterized plant species. Analysis of paired LTR sequences uncovered a low frequency of deletions relative to base substitutions, indicating that removal of retrotransposon sequences by illegitimate recombination is also operating more slowly. Significantly, we identified three subfamilies of nonautonomous elements that have replicated in the recent past, suggesting that retrotransposition can be catalyzed in trans by autonomous elements elsewhere in the genome. Analysis of 1.6 Mb of sequence from Glycine tomentella, a wild perennial relative of soybean, uncovered 23 intact retroelements, two of which had accumulated no mutations in their LTRs, indicating very recent insertion. A similar pattern was found in 0.94 Mb of sequence from Phaseolus vulgaris (common bean). Thus, autonomous and nonautonomous retrotransposons appear to be both abundant and active in Glycine and Phaseolus. The impact of nonautonomous retrotransposon replication on genome size appears to be much greater than previously appreciated.  相似文献   
2.

Background

Although the reference human genome sequence was declared finished in 2003, some regions of the genome remain incomplete due to their complex architecture. One such region, 1q21.1-q21.2, is of increasing interest due to its relevance to human disease and evolution. Elucidation of the exact variants behind these associations has been hampered by the repetitive nature of the region and its incomplete assembly. This region also contains 238 of the 270 human DUF1220 protein domains, which are implicated in human brain evolution and neurodevelopment. Additionally, examinations of this protein domain have been challenging due to the incomplete 1q21 build. To address these problems, a single-haplotype hydatidiform mole BAC library (CHORI-17) was used to produce the first complete sequence of the 1q21.1-q21.2 region.

Results

We found and addressed several inaccuracies in the GRCh37sequence of the 1q21 region on large and small scales, including genomic rearrangements and inversions, and incorrect gene copy number estimates and assemblies. The DUF1220-encoding NBPF genes required the most corrections, with 3 genes removed, 2 genes reassigned to the 1p11.2 region, 8 genes requiring assembly corrections for DUF1220 domains (~91 DUF1220 domains were misassigned), and multiple instances of nucleotide changes that reassigned the domain to a different DUF1220 subtype. These corrections resulted in an overall increase in DUF1220 copy number, yielding a haploid total of 289 copies. Approximately 20 of these new DUF1220 copies were the result of a segmental duplication from 1q21.2 to 1p11.2 that included two NBPF genes. Interestingly, this duplication may have been the catalyst for the evolutionarily important human lineage-specific chromosome 1 pericentric inversion.

Conclusions

Through the hydatidiform mole genome sequencing effort, the 1q21.1-q21.2 region is complete and misassemblies involving inter- and intra-region duplications have been resolved. The availability of this single haploid sequence path will aid in the investigation of many genetic diseases linked to 1q21, including several associated with DUF1220 copy number variations. Finally, the corrected sequence identified a recent segmental duplication that added 20 additional DUF1220 copies to the human genome, and may have facilitated the chromosome 1 pericentric inversion that is among the most notable human-specific genomic landmarks.  相似文献   
3.
Because of their nuclease resistance and ability to form substrates for RNase H, antisense oligodeoxynucleotides (ODNs) possessing several methoxyethylphosphoramidate linkages at both termini have proven effective at targeting the degradation of specific mRNAs in Xenopus embryos. The efficacy of these compounds subsequently observed in tissue culture focused our attention on the issue of cellular uptake. To investigate the extent to which phosphate backbone modifications may increase the lipophilicity of ODNs, and thereby increase passive uptake by cells, the partitioning of a series of phosphoramidate-modified compounds between aqueous and organic phases was examined. The octanol:water partition coefficient of an unmodified, mixed-sequence 16-mer was 1.75 x 10(-5). The log of the partition coefficient increased in a sigmoidal manner with the number of methoxyethylphosphoramidate internucleoside linkages, indicating a nonlinear free energy relationship. The highest level of partitioning demonstrated was approximately 4 x 10(-3) (a 230-fold increase), attained when 11 of the 15 phosphodiesters were modified. An increase in hydrophobicity was also attained with C8 and C10 alkylamines acting as phase-transfer agents. The melting temperatures of heteroduplexes formed between a phosphoramidate-modified ODN and a complementary unmodified DNA strand decreased by approximately 1.5 degrees C for every phosphate group modification. ODNs can thus be extensively derivatized without substantially compromising duplex formation under physiological conditions.  相似文献   
4.
Induced pluripotent stem cells (iPSC) hold significant promise for advancing biomedical research. In the case of monogenic diseases, patient-iPSC and their derivatives contain the disease-causing mutation, suggesting the possibility of recapitulating salient disease features in vitro. Fanconi anemia (FA) is the most common inherited bone marrow failure syndrome. The etiology of bone marrow failure in FA remains largely unclear, but limited studies on patient bone marrow cells indicate cell intrinsic defects as causative. We examined the feasibility of modeling FA in a system based on hematopoietic differentiation of patient-specific iPSC. An informative iPSC-based model is predicated on the ability to derive disease-specific (uncorrected) patient iPSC that contain the disease-causing mutation, are pluripotent, maintain a normal karyotype and are capable of hematopoietic differentiation. Careful analysis of hematopoietic differentiation of such iPSC holds the promise of uncovering new insights into bone marrow failure and may enable high-throughput screening with the goal of identifying compounds that ameliorate hematopoietic failure. Ultimately, genetic correction, molecular characterization and successful engraftment of iPSC-derived cells may provide an attractive alternative to current hematopoietic stem cell-targeted gene therapy in some monogenic diseases, including FA.  相似文献   
5.
6.
DUF1220 domains show the largest human-lineage-specific increase in copy number of any protein-coding region in the human genome and map primarily to 1q21, where deletions and reciprocal duplications have been associated with microcephaly and macrocephaly, respectively. Given these findings and the high correlation between DUF1220 copy number and brain size across primate lineages (R2 = 0.98; p = 1.8 × 10−6), DUF1220 sequences represent plausible candidates for underlying 1q21-associated brain-size pathologies. To investigate this possibility, we used specialized bioinformatics tools developed for scoring highly duplicated DUF1220 sequences to implement targeted 1q21 array comparative genomic hybridization on individuals (n = 42) with 1q21-associated microcephaly and macrocephaly. We show that of all the 1q21 genes examined (n = 53), DUF1220 copy number shows the strongest association with brain size among individuals with 1q21-associated microcephaly, particularly with respect to the three evolutionarily conserved DUF1220 clades CON1(p = 0.0079), CON2 (p = 0.0134), and CON3 (p = 0.0116). Interestingly, all 1q21 DUF1220-encoding genes belonging to the NBPF family show significant correlations with frontal-occipital-circumference Z scores in the deletion group. In a similar survey of a nondisease population, we show that DUF1220 copy number exhibits the strongest correlation with brain gray-matter volume (CON1, p = 0.0246; and CON2, p = 0.0334). Notably, only DUF1220 sequences are consistently significant in both disease and nondisease populations. Taken together, these data strongly implicate the loss of DUF1220 copy number in the etiology of 1q21-associated microcephaly and support the view that DUF1220 domains function as general effectors of evolutionary, pathological, and normal variation in brain size.  相似文献   
7.
The nucleotide-binding site (NBS)-Leucine-rich repeat (LRR) gene family accounts for the largest number of known disease resistance genes, and is one of the largest gene families in plant genomes. We have identified 333 nonredundant NBS-LRRs in the current Medicago truncatula draft genome (Mt1.0), likely representing 400 to 500 NBS-LRRs in the full genome, or roughly 3 times the number present in Arabidopsis (Arabidopsis thaliana). Although many characteristics of the gene family are similar to those described on other plant genomes, several evolutionary features are particularly pronounced in M. truncatula, including a high degree of clustering, evidence of significant numbers of ectopic translocations from clusters to other parts of the genome, a small number of more evolutionarily stable NBS-LRRs, and numerous truncations and fusions leading to novel domain compositions. The gene family clearly has had a large impact on the structure of the genome, both through ectopic translocations (potentially, a means of seeding new NBS-LRR clusters), and through two extraordinarily large superclusters. Chromosome 6 encodes approximately 34% of all TIR-NBS-LRRs, while chromosome 3 encodes approximately 40% of all coiled-coil-NBS-LRRs. Almost all atypical domain combinations are in the TIR-NBS-LRR subfamily, with many occurring within one genomic cluster. This analysis shows the gene family not only is important functionally and agronomically, but also plays a structural role in the genome.  相似文献   
8.
Evaluation of Nitrate Reductase Activity in Rhizobium japonicum   总被引:2,自引:0,他引:2       下载免费PDF全文
Nitrate reductase activity was evaluated by four approaches, using four strains of Rhizobium japonicum and 11 chlorate-resistant mutants of the four strains. It was concluded that in vitro assays with bacteria or bacteroids provide the most simple and reliable assessment of the presence or absence of nitrate reductase. Nitrite reductase activity with methyl viologen and dithionite was found, but the enzyme activity does not confound the assay of nitrate reductase.  相似文献   
9.
10.
Ribosomal proteins play a critical role in tightly coordinating p53 signaling with ribosomal biogenesis. Several ribosomal proteins have been shown to induce and activate p53 via inhibition of MDM2. Here, we report that S27a, a small subunit ribosomal protein synthesized as an 80-amino acid ubiquitin C-terminal extension protein (CEP80), functions as a novel regulator of the MDM2-p53 loop. S27a interacts with MDM2 at the central acidic domain of MDM2 and suppresses MDM2-mediated p53 ubiquitination, leading to p53 activation and cell cycle arrest. Knockdown of S27a significantly attenuates the p53 activation in cells in response to treatment with ribosomal stress-inducing agent actinomycin D or 5-fluorouracil. Interestingly, MDM2 in turn ubiquitinates S27a and promotes proteasomal degradation of S27a in response to actinomycin D treatment, thus forming a mutual-regulatory loop. Altogether, our results reveal that S27a plays a non-redundant role in mediating p53 activation in response to ribosomal stress via interplaying with MDM2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号