首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   491篇
  免费   54篇
  545篇
  2023年   3篇
  2022年   3篇
  2021年   10篇
  2020年   8篇
  2019年   9篇
  2018年   13篇
  2017年   16篇
  2016年   11篇
  2015年   40篇
  2014年   31篇
  2013年   39篇
  2012年   34篇
  2011年   33篇
  2010年   28篇
  2009年   16篇
  2008年   19篇
  2007年   29篇
  2006年   28篇
  2005年   29篇
  2004年   26篇
  2003年   22篇
  2002年   19篇
  2001年   12篇
  2000年   7篇
  1999年   11篇
  1998年   7篇
  1997年   6篇
  1996年   6篇
  1994年   3篇
  1993年   1篇
  1992年   5篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1982年   3篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1971年   1篇
  1967年   3篇
  1966年   4篇
排序方式: 共有545条查询结果,搜索用时 0 毫秒
1.
Drought responses of diurnal gas exchange, malic acid accumulation and water status were examined in Delosperma tradescantioides , a succulent that grows in drought-prone microenvironments in summer rainfall and all-year rainfall regions of southern Africa. When well-watered, this species exhibited Crassulacean acid metabolism (CAM)-cycling, but its carbon fixation pattern changed during the development of drought, shifting to either low-level CAM or to CAM-idling. The rate and pattern of this change depended on environmental conditions, duration of water stress and leaf age. At the onset of drought, diurnal malate fluctuation increased, but was strongly depressed (by ca 70%) as drought continued, and when leaf water content and water potential were low (ca 35 and 50% of the initial levels, respectively). When rewatered, rates of growth and photosynthesis, gas exchange and water status recovered fully to pre-stressed values within two days. Whole-shoot carbon uptake rates suggested that leaf growth had continued unabated during a short-term (∼ one week) drought. This emphasises that CAM-idling allows the maintenance of active metabolism with negligible gas exchange when soil water is limiting. It is possible that old or senescent leaves may provide water for the expansion of developing leaves during initial periods of drought. Regardless of the water regime and environmental conditions, leaf nocturnal malate accumulation and water content were positively correlated and increased with leaf age. Thus the gradual loss of water from older mature leaves may induce CAM-idling, which reduces water loss. An important ecological consequence of this combination of CAM modes is the potential to switch rapidly between fast growth via C3 gas exchanges when well-watered to water-conserving CAM-idling during drought.  相似文献   
2.
Summary The oxyhemoglobin saturation (HbO2) of single red blood cells within tumor microvessels (diameter: 3–12 µm) of DS-Carcinosarcoma was studied using a cryophotometric micromethod. In untreated control tumors (mean tissue temperature approx. 35° C) the measured values scattered over the whole saturation range from zero to 100 sat.%, the mean being 51 sat.%. Upon heating at 40° C for 30 min, the oxygenation of the tumor tissue significantly improved as compared with control conditions. After 40° C-hyperthermia a mean oxyhemoglobin saturation of 66 sat.% was obtained. In contradistinction to this, after 43° C-hyperthermia the tumor oxygenation was significantly lower and reached a mean HbO2 saturation value of 47 sat.%. A further temperature rise to 45° C caused the oxygenation to drop drastically (mean oxyhemoglobin saturation value: 24 sat.%). This is due to a severe restriction of nutritive blood flow.The changes in tumor oxygenation after hyperthermia seem to be predominantly mediated through changes in tumor blood flow, including tumor microcirculation, which showed a similar temperature dependence. Metabolic effects probably play a minor role in the oxyhemoglobin saturation distribution within tumor microvessels.Supported by the Deutsche Forschungsgemeinschaft (Va 57/2-1). Presented in part at the International Symposium on Biomedical Thermology, June 30 to July 4, 1981, Strasbourg, France  相似文献   
3.
Crickets appear to rely less upon olfactory communication than do their non-acoustical relatives, but males and females of house (Acheta) and field (Gryllus) crickets can determine sex by odour, and males can distinguish odours of conspecific and heterospecific females. In the presence of female odours, female-deprived males groom more vigorously and are more aggressive.  相似文献   
4.
The sense of taste plays an important role in the evaluation of the nutrient composition of consumed food. Bitter taste in particular is believed to serve a warning function against the ingestion of poisonous substances. In the past years enormous progress was made in the characterization of bitter taste receptors, including their gene expression patterns, pharmacological features and presumed physiological roles in gustatory as well as in non-gustatory tissues. However, due to a lack in TAS2R-specifc antibodies the localization of receptor proteins within gustatory tissues has never been analyzed. In the present study we have screened a panel of commercially available antisera raised against human bitter taste receptors by immunocytochemical experiments. One of these antisera was found to be highly specific for the human bitter taste receptor TAS2R38. We further demonstrate that this antibody is able to detect heterologously expressed TAS2R38 protein on Western blots. The antiserum is, however, not able to interfere significantly with TAS2R38 function in cell based calcium imaging analyses. Most importantly, we were able to demonstrate the presence of TAS2R38 protein in human gustatory papillae. Using double immunofluorescence we show that TAS2R38-positive cells form a subpopulation of PLCbeta2 expressing cells. On a subcellular level the localization of this bitter taste receptor is neither restricted to the cell surface nor particularly enriched at the level of the microvilli protruding into the pore region of the taste buds, but rather evenly distributed over the entire cell body.  相似文献   
5.
Stroke and circulatory arrest cause interferences in blood flow to the brain that result in considerable tissue damage. The primary method to reduce or prevent neurologic damage to patients suffering from brain ischemia is prompt restoration of blood flow to the ischemic tissue. However, paradoxically, restoration of blood flow causes additional damage and exacerbates neurocognitive deficits among patients who suffer a brain ischemic event. Mitochondria play a critical role in reperfusion injury by producing excessive reactive oxygen species (ROS) thereby damaging cellular components, and initiating cell death. In this review, we summarize our current understanding of the mechanisms of mitochondrial ROS generation during reperfusion, and specifically, the role the mitochondrial membrane potential plays in the pathology of cerebral ischemia/reperfusion. Additionally, we propose a temporal model of ROS generation in which posttranslational modifications of key oxidative phosphorylation (OxPhos) proteins caused by ischemia induce a hyperactive state upon reintroduction of oxygen. Hyperactive OxPhos generates high mitochondrial membrane potentials, a condition known to generate excessive ROS. Such a state would lead to a “burst” of ROS upon reperfusion, thereby causing structural and functional damage to the mitochondria and inducing cell death signaling that eventually culminate in tissue damage. Finally, we propose that strategies aimed at modulating this maladaptive hyperpolarization of the mitochondrial membrane potential may be a novel therapeutic intervention and present specific studies demonstrating the cytoprotective effect of this treatment modality.  相似文献   
6.
7.
Sleep disorders are a major risk factor for cardiovascular diseases. Sleep apnea is the most common sleep disturbance and its detection relies on a polysomnography, i.e., a combination of several medical examinations performed during a monitored sleep night. In order to detect occurrences of sleep apnea without the need of combined recordings, we focus our efforts on extracting a quantifier related to the events of sleep apnea from a cardiovascular time series, namely systolic blood pressure (SBP). Physiologic time series are generally highly nonstationary and entrap the application of conventional tools that require a stationary condition. In our study, data nonstationarities are uncovered by a segmentation procedure which splits the signal into stationary patches, providing local quantities such as mean and variance of the SBP signal in each stationary patch, as well as its duration . We analysed the data of 26 apneic diagnosed individuals, divided into hypertensive and normotensive groups, and compared the results with those of a control group. From the segmentation procedure, we identified that the average duration , as well as the average variance , are correlated to the apnea-hypoapnea index (AHI), previously obtained by polysomnographic exams. Moreover, our results unveil an oscillatory pattern in apneic subjects, whose amplitude is also correlated with AHI. All these quantities allow to separate apneic individuals, with an accuracy of at least . Therefore, they provide alternative criteria to detect sleep apnea based on a single time series, the systolic blood pressure.  相似文献   
8.
9.
10.
Caveolae position CaV3.2 (T‐type Ca2+ channel encoded by the α‐3.2 subunit) sufficiently close to RyR (ryanodine receptors) for extracellular Ca2+ influx to trigger Ca2+ sparks and large‐conductance Ca2+‐activated K+ channel feedback in vascular smooth muscle. We hypothesize that this mechanism of Ca2+ spark generation is affected by age. Using smooth muscle cells (VSMCs) from mouse mesenteric arteries, we found that both Cav3.2 channel inhibition by Ni2+ (50 µM) and caveolae disruption by methyl‐ß‐cyclodextrin or genetic abolition of Eps15 homology domain‐containing protein (EHD2) inhibited Ca2+ sparks in cells from young (4 months) but not old (12 months) mice. In accordance, expression of Cav3.2 channel was higher in mesenteric arteries from young than old mice. Similar effects were observed for caveolae density. Using SMAKO Cav1.2?/? mice, caffeine (RyR activator) and thapsigargin (Ca2+ transport ATPase inhibitor), we found that sufficient SR Ca2+ load is a prerequisite for the CaV3.2‐RyR axis to generate Ca2+ sparks. We identified a fraction of Ca2+ sparks in aged VSMCs, which is sensitive to the TRP channel blocker Gd3+ (100 µM), but insensitive to CaV1.2 and CaV3.2 channel blockade. Our data demonstrate that the VSMC CaV3.2‐RyR axis is down‐regulated by aging. This defective CaV3.2‐RyR coupling is counterbalanced by a Gd3+ sensitive Ca2+ pathway providing compensatory Ca2+ influx for triggering Ca2+ sparks in aged VSMCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号