Leaf-litter decomposition is a major component of carbon and nutrient dynamics in tropical forest ecosystems, and moisture availability is widely considered to be a major influence on decomposition rates. Here, we report the results of a study of leaf-litter decomposition of five tree species in response to dry-season irrigation in a tropical forest regrowth stand in the Brazilian Amazon; three experiments differing in the timing of installation and duration allowed for an improved resolution of irrigation effects on decomposition. We hypothesized that decomposition rates would be faster under higher moisture availability in the wet season and during dry-season irrigation periods in the treatment plots, and that decomposition rates would be faster for species with higher quality leaves, independent of treatment. The rates of decomposition ( k ) were up to 2.4 times higher in irrigated plots than in control plots. The highest k values were shown by Annona paludosa (0.97 to 1.26/yr) while Ocotea guianensis (0.73 to 0.85/yr) had the lowest values; intermediate rates were found for Lacistema pubescens (0.91 to 1.02/yr) and Vismia guianensis (0.91 to 1.08/yr). These four tree species differed significantly in leaf-litter quality parameters (nitrogen, phosphorus, lignin, and cellulose concentrations, as well as lignin:nitrogen and carbon:nitrogen ratios), but differences in decomposition rates among tree species were not strictly correlated with leaf-litter quality. Overall, our results show that dry-season moisture deficits limit decomposition in Amazonian forest regrowth. 相似文献
The species Piper hispidinervum, Piper aduncum, and Piper affinis hispidinervum have essential oils with high levels of safrole, dillapiole, and sarisan, respectively. Safrole is important for pharmaceutical and chemical industries, while dillapiole and sarisan are promising compounds to control insects and fungi. These species are very similar morphologically and their taxonomy is controversial. Divergent hypotheses consider P. aduncum and P. hispidinervum either as a single species or as distinct taxa, while P. affinis hispidinervum is inferred to be a natural hybrid or a chemotype of P. hispidinervum. Delimiting the taxonomic boundaries would be helpful for germplasm conservation and breeding programs. This study aimed to undertake a detailed analysis of P. aduncum, P. hispidinervum, and P. affinis hispidinervum karyotype and rDNA sites. Genomic in situ hybridization (GISH) was used to establish genomic homology among species and to test the natural hybridization hypothesis for origin of P. affinis hispidinervum. Karyotype traits were similar for all three species: 2n = 26 small chromosomes, predominantly metacentric. All three species exhibited CMA+ bands on the secondary constriction of chromosome pair 4. A size-heteromorphic 35S rDNA site was co-localized with the CMA+ band. A 5S rDNA site was located in the proximal region of chromosome pair 7. The patterns of genomic hybridization revealed that the repetitive DNA fraction of the species is highly similar in terms of proportion of genome, sequence type, and distribution. Our findings did not allow us to differentiate the three species and point to the importance of deeper genomic studies to elucidate the taxonomic controversy.
P-selectin glycoprotein ligand-1 (PSGL-1) is a membrane-bound glycoprotein expressed in lymphoid and myeloid cells. It is a ligand of P-, E- and L-selectin and is involved in T cell trafficking and homing to lymphoid tissues, among other functions. PSGL-1 expression has been implicated in different lymphoid malignancies, so here we aimed to evaluate the involvement of PSGL-1 in T cell lymphomagenesis and dissemination. PSGL-1 was highly expressed at the surface of human and mouse T cell leukemia and lymphoma cell lines. To assess its impact on T cell malignancies, we stably expressed human PSGL-1 (hPSGL-1) in a mouse thymic lymphoma cell line, which expresses low levels of endogenous PSGL-1 at the cell surface. hPSGL-1-expressing lymphoma cells developed subcutaneous tumors in athymic nude mice recipients faster than control empty vector or parental cells. Moreover, the kidneys, lungs and liver of tumor-bearing mice were infiltrated by hPSGL-1-expressing malignant T cells. To evaluate the role of PSGL-1 in lymphoma cell dissemination, we injected intravenously control and hPSGL-1-expressing lymphoma cells in athymic mice. Strikingly, PSGL-1 expression facilitated disease infiltration of the kidneys, as determined by histological analysis and anti-CD3 immunohistochemistry. Together, these results indicate that PSGL-1 expression promotes T cell lymphoma development and dissemination to different organs. 相似文献
Currently, the biofortification of crops like wheat with micronutrients such as iron (Fe) and zinc (Zn) is extremely important due to the deficiencies of these micronutrients in the human diet and in soils. Agronomic biofortification with Fe and Zn can be done through different exogenous strategies such as soil application, foliar spraying, and seed priming. However, the excess of these micronutrients can be detrimental to the plants. Therefore, in the last decade, a high number of studies focused on the evaluation of their phytotoxic effects to define the best strategies for biofortification of bread wheat. In this study, we investigated the effects of seed priming with different dosages (1 mg L?1 to 8 mg L?1) of Fe and/or Zn in germination, mitosis and yield of bread wheat cv. ‘Jordão’ when compared with control. Overall, our results showed that: micronutrient dosages higher than 4 mg L?1 negatively affect the germination; Fe and/or Zn concentrations higher than 2 mg L?1 significantly decrease the mitotic index and increase the percentage of dividing cells with anomalies; treatments performed with 8 mg L?1 of Fe and/or 8 mg L?1 Zn caused negative effects in germination, mitosis and grain yield. Moreover, seed priming with 2 mg L?1 Fe?+?2 mg L?1 Zn has been shown to be non-cytotoxic, ensuring a high rate of germination (80%) and normal dividing cells (90%) as well as improving tillering and grain yield. This work revealed that seed priming with Fe and Zn micronutrients constitutes a useful and alternative approach for the agronomic biofortification of bread wheat. 相似文献
Connective-tissue growth factor (CTGF) is a modular secreted protein implicated in multiple cellular events such as chondrogenesis, skeletogenesis, angiogenesis and wound healing. CTGF contains four different structural modules. This modular organization is characteristic of members of the CCN family. The acronym was derived from the first three members discovered, cysteine-rich 61 (CYR61), CTGF and nephroblastoma overexpressed (NOV). CTGF is implicated as a mediator of important cell processes such as adhesion, migration, proliferation and differentiation. Extensive data have shown that CTGF interacts particularly with the TGFβ, WNT and MAPK signaling pathways. The capacity of CTGF to interact with different growth factors lends it an important role during early and late development, especially in the anterior region of the embryo. ctgf knockout mice have several cranio-facial defects, and the skeletal system is also greatly affected due to an impairment of the vascular-system development during chondrogenesis. This study, for the first time, indicated that CTGF is a potent inductor of gliogenesis during development. Our results showed that in vitro addition of recombinant CTGF protein to an embryonic mouse neural precursor cell culture increased the number of GFAP- and GFAP/Nestin-positive cells. Surprisingly, CTGF also increased the number of Sox2-positive cells. Moreover, this induction seemed not to involve cell proliferation. In addition, exogenous CTGF activated p44/42 but not p38 or JNK MAPK signaling, and increased the expression and deposition of the fibronectin extracellular matrix protein. Finally, CTGF was also able to induce GFAP as well as Nestin expression in a human malignant glioma stem cell line, suggesting a possible role in the differentiation process of gliomas. These results implicate ctgf as a key gene for astrogenesis during development, and suggest that its mechanism may involve activation of p44/42 MAPK signaling. Additionally, CTGF-induced differentiation of glioblastoma stem cells into a less-tumorigenic state could increase the chances of successful intervention, since differentiated cells are more vulnerable to cancer treatments. 相似文献