首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   5篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   4篇
  2019年   8篇
  2018年   5篇
  2017年   4篇
  2016年   3篇
  2015年   1篇
  2014年   4篇
  2013年   2篇
  2012年   6篇
  2011年   1篇
  2010年   2篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
排序方式: 共有54条查询结果,搜索用时 15 毫秒
1.
Tyrosinase is a type 3 copper enzyme responsible for skin pigmentation disorders, skin cancer, and enzymatic browning of vegetables and fruits. In the present article, 12 small molecules of 2‐benzylidenehydrazine‐1‐carbothioamide were designed, synthesized and evaluated for their anti‐tyrosinase activities followed by molecular docking and pharmacophore‐based screening. Among synthesized thiosemicarbazone derivatives, one compound, (2E)‐2‐[(4‐nitrophenyl)methylidene]hydrazine‐1‐carbothioamide, is the strongest inhibitor of mushroom tyrosinase with IC50 of 0.05 μM which demonstrated a 128‐fold increase in potency compared to the positive control. Kinetic studies also revealed mix type inhibition by this compound. Docking studies confirmed the complete fitting of the synthesized compounds into the tyrosinase active site. The results underline the potential of 2‐benzylidenehydrazine‐1‐carbothioamides as potent pharmacophore to extend the tyrosinase inhibition in drug discovery.  相似文献   
2.
Exosome-based therapy is an emerging novel approach for myocardial infarction (MI) treatment. Exosomes are identified as extracellular vesicles that are produced within multivesicular bodies in the cells' cytosols and then are secreted from the cells. Exosomes are 30–100 nm in diameter that are released from viable cells and are different from other secreted vesicles such as apoptotic bodies and microvesicles in their origin and contents such as RNAs, proteins, and nucleic acid. The recent advances in exosome research have demonstrated the role of these bionanovesicles in the physiological, pathological, and molecular aspects of the heart. The results of in vitro and preclinical models have shown that exosomes from different cardiac cells can improve cardiac function following MI. For example, mesenchymal stem cells (MSCs) and cardiac progenitor cells (CPCs) containing exosomes can affect the proliferation, survival, and differentiation of cardiac fibroblasts and cardiomyocytes. Moreover, MSCs- and CPCs-derived exosomes can enhance the migration of endothelial cells. Exosome-based therapy approaches augment the cardiac function by multiple means, such as reducing fibrosis, stimulation of vascular angiogenesis, and proliferation of cardiomyocytes that result in replacing damaged heart tissue with newly generated functional myocytes. This review article aims to briefly discuss the recent advancements in the role of secreted exosomes in myocardial repair by focusing on cardiac cells-derived exosomes.  相似文献   
3.
ABSTRACT

Interferons, IFNs, are among the most widely studied and clinically used biopharmaceuticals. Despite their invaluable therapeutic roles, the widespread use of IFNs suffers from some inherent limitations, mainly their relatively short circulation lifespan and their unwanted effects on some non-target tissues. Therefore, both these constraints have become the central focus points for the research efforts on the development of a variety of novel delivery systems for these therapeutic agents with the ultimate goal of improving their therapeutic end-points. Generally, the delivery systems currently under investigation for IFNs can be classified as particulate delivery systems, including micro- and nano-particles, liposomes, minipellets, cellular carriers, and non-particulate delivery systems, including PEGylated IFNs, other chemically conjugated IFNs, immunoconjugated IFNs, and genetically conjugated IFNs. All these strategies and techniques have their own possibilities and limitations, which should be taken into account when considering their clinical application. In this article, currently studied delivery systems/techniques for IFN delivery have been reviewed extensively, with the main focus on the pharmacokinetic consequences of each procedure.  相似文献   
4.
Spermatogonial cells (SCs) are key cells for spermatogenesis. These cells are affected by paracrine signals originated from nearby somatic cells, among them Leydig cells have receptors for osteocalcin, a hormone known for exerting positive roles in the promotion of spermatogenesis. The aim of this study was to evaluate roles for osteocalcin on SCs proliferative and differentiation features after coculture with Leydig cells. SCs and Leydig cells were isolated from neonate NMRI offspring mice and adult NMRI mice, respectively. SCs population were then enriched in a differential attachment technique and assessed for morphological features and identity. Then, SCs were cocultured with Leydig cells and incubated with osteocalcin for 4 weeks. Evaluation of proliferation and differentiation-related factors were surveyed using immunocytochemistry (ICC), Western blot, and quantitative real-time polymerase chain reaction (PCR). Finally, the rate of testosterone release to the culture media was measured at the end of 4th week. Morphological and flow cytometry results showed that the SCs were the population of cells able to form colonies and to express ID4, α6-, and β1-integrin markers, respectively. Leydig cells were also able to express Gprc6α as a specific marker for the cells. Incubation of SCs/Leydig coculture with osteocalcin has resulted in an increase in the rate of expressions for differentiation-related markers. Levels of testosterone in the culture media of SCs/Leydig was positively influenced by osteocalcin. It could be concluded that osteocalcin acts as a positive inducer of SCs in coculture with Leydig cells probably through stimulation of testosterone release from Leydig cells and associated signaling.  相似文献   
5.
Fragile histidine trail (FHIT) is a tumor suppressor in response to DNA damage which has been deleted in various tumors. However, the signaling mechanisms and interactions of FHIT with regard to apoptotic proteins including p53 and p38 in the DNA damage-induced apoptosis are not well described. In the present study, we used etoposide-induced DNA damage in MCF-7 as a model to address these crosstalks. The time course study showed that the expression of FHIT, p53, and p38MAPK started after 1 hour following etoposide treatment. FHIT overexpression led to increase p53 expression, p38 activation, and augmented apoptosis following etoposide-induced DNA damage compared to wild-type cells. However, FHIT knockdown blocked p53 expression, delayed p38 activation, and completely inhibited etoposide-induced apoptosis. Inhibition of p38 activity prevented induction of p53, FHIT, and apoptosis in this model. Thus, activation of p38 upon etoposide treatment leads to increase in FHIT and p53 expression. In p53 knockdown MCF-7, the FHIT induction was hampered but p38 activation was induced in lower doses of etoposide. In p53 knockdown cells, inhibition of p38 induced FHIT expression and apoptosis. Our data demonstrated that the exposure of MCF-7 cells to etoposide increases apoptosis through a mechanism involving the activation of the p38-FHIT-p53 pathway. Moreover, our findings suggest signaling interaction for these pathways may represent a promising therapy for breast cancer.  相似文献   
6.
Molecular Biology Reports - Coronary artery disease (CAD), is the leading cause of mortality and morbidity worldwide. Tenascin-C (TNC) with high expression levels in inflammatory and cardiovascular...  相似文献   
7.
Homologous recombination (HR) is the major pathway for repairing double strand breaks (DSBs) in eukaryotes and XRCC2 is an essential component of the HR repair machinery. To evaluate the potential role of mutations in gene repair by HR in individuals susceptible to differentiated thyroid carcinoma (DTC) we used high resolution melting (HRM) analysis, a recently introduced method for detecting mutations, to examine the entire XRCC2 coding region in an Iranian population. HRM analysis was used to screen for mutations in three XRCC2 coding regions in 50 patients and 50 controls. There was no variation in the HRM curves obtained from the analysis of exons 1 and 2 in the case and control groups. In exon 3, an Arg(188)His polymorphism (rs3218536) was detected as a new melting curve group (OR: 1.46; 95%CI: 0.432-4.969; p = 0.38) compared with the normal melting curve. We also found a new Ser(150)Arg polymorphism in exon 3 of the control group. These findings suggest that genetic variations in the XRCC2 coding region have no potential effects on susceptibility to DTC. However, further studies with larger populations are required to confirm this conclusion.  相似文献   
8.
Peroxisome proliferator-activated receptors (PPAR) and retinoid X receptors (RXR) are implicated in the development of several obesity-related cancers. Little is known of either the expression or function of PPARs and RXRs in endometrial cancer although this increasingly common disease is highly associated with both obesity and insulin resistance. We investigated the expression of PPAR and RXR subtypes in human endometrial cancers and normal endometrium with immunoblotting and immunohistochemistry and subsequently showed PPAR/RXR binding preferences by coimmunoprecipitation. To determine the functions of PPARs within the endometrium, we investigated proliferation, apoptosis, PTEN expression, and secretion of vascular endothelial growth factor (VEGF) in endometrial cell lines after reducing the expression of PPARα and PPARγ with antisense RNA. The functional effects of PPAR ligands were also investigated in vitro. We identified differential expression of PPAR and RXR subtypes in endometrial cancers and discovered that PPARγ expression correlated with expression of PTEN. PPARα activation influences endometrial cell growth and VEGF secretion. PPARγ activation reduces proliferation of endometrial cells via regulation of PTEN and appears to reduce VEGF secretion. We conclude that the PPAR/RXR pathway contribute to endometrial carcinogenesis by control of PTEN expression and modulation of VEGF secretion. We propose that PPAR ligands should be considered for clinical investigation in early phase studies of women with endometrial cancer.  相似文献   
9.
CRC-associated P53 mutations have not been studied extensively in non-Western countries at relatively low CRC risk. We examined, for the first time, 196 paraffin-embedded CRC cases from Northern Iran for mutations in P53 exons 5-8 using PCR-direct sequencing. P53 status and mutation site/type were correlated with nuclear protein accumulation, clinicopathologic variables and data on K-ras mutations and high-level microsatellite instability (MSI-H). We detected 96 P53 mutations in 87 (44.4%) cases and protein accumulation in 84 cases (42.8%). P53 mutations correlated directly with stage and inversely with MSI-H. Distal CRCs were more frequently mutated at major CpG hotspot codons [248 (8/66, 12.1%), 175 (7/66, 10.6%), and 245 (7/66, 10.6%)], while in proximal tumors codon 213, emerged as most frequently mutated (5/28, 17.9% vs. 3/66, 4.5%, P = 0.048). Transitions at CpGs, the most common mutation type, were more frequent in non-mucinous (25% vs. 10.4% in mucinous, P = 0.032), and distal CRC (27% vs. 12.5% in proximal, P = 0.02), and correlated with K-ras transversions. Transitions at non-CpGs, second most common P53 mutation, were more frequent in proximal tumors (15.6% vs. 4.7% in distal, P = 0.01), and correlated with K-ras transitions and MSI-H. Overall frequency and types of mutations and correlations with P53 accumulation, stage and MSI-H were as reported for non-Iranian patients. However P53 mutation site/type and correlations between P53 and K-ras mutation types differed between proximal and distal CRC. The codon 213 P53 mutation that recurred in proximal CRC was previously reported as frequent in esophageal cancer from Northern Iran.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号