首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   7篇
  2023年   1篇
  2022年   3篇
  2021年   7篇
  2020年   11篇
  2019年   10篇
  2018年   7篇
  2017年   5篇
  2016年   9篇
  2015年   11篇
  2014年   8篇
  2013年   13篇
  2012年   13篇
  2011年   7篇
  2010年   6篇
  2009年   7篇
  2008年   4篇
  2007年   7篇
  2006年   2篇
  2005年   6篇
  2004年   4篇
  2002年   7篇
  2001年   3篇
  1999年   3篇
  1998年   2篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1967年   1篇
排序方式: 共有170条查询结果,搜索用时 15 毫秒
1.
In this study, the chemical features of dendritic mesoporous silica nanoparticles (DMSNs) provided the opportunity to design a nanostructure with the capability to intelligently transport the payload to the tumor cells. In this regard, doxorubicin (DOX)-encapsulated DMSNs was electrostatically surface-coated with polycarboxylic acid dextran (PCAD) to provide biocompatible dextran-capped DMSNs (PCAD-DMSN@DOX) with controlled pH-dependent drug release. Moreover, a RNA aptamer against a cancer stem cell (CSC) marker, CD133 was covalently attached to the carboxyl groups of DEX to produce a CD133-PCAD-DMSN@DOX. Then, the fabricated nanosystem was utilized to efficiently deliver DOX to CD133+ colorectal cancer cells (HT29). The in vitro evaluation in terms of cellular uptake and cytotoxicity demonstrated that the CD133-PCAD-DMSN@DOX specifically targets HT29 as a CD133 overexpressed cancer cells confirmed by flow cytometry and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. The potentially promising intelligent-targeted platform suggests that targeted dextran-capped DMSNs may find impressive application in cancer therapy.  相似文献   
2.
The Arabidopsis FAE1 beta-ketoacyl-CoA synthase (FAE1 KCS) catalyzes the condensation of malonyl-CoA with long-chain acyl-CoAs. Sequence analysis of FAE1 KCS predicted that this condensing enzyme is anchored to a membrane by two adjacent N-terminal membrane-spanning domains. In order to characterize the FAE1 KCS and analyze its mechanism, FAE1 KCS and its mutants were engineered with a His6-tag at their N-terminus, and expressed in Saccharomyces cerevisiae. The membrane-bound enzyme was then solubilized and purified to near homogeneity on a metal affinity column. Wild-type recombinant FAE1 KCS was active with several acyl-CoA substrates, with highest activity towards saturated and monounsaturated C16 and C18. In the absence of an acyl-CoA substrate, FAE1 KCS was unable to carry out decarboxylation of [3-(14)C]malonyl-CoA, indicating that it requires binding of the acyl-CoA for decarboxylation activity. Site-directed mutagenesis was carried out on the FAE1 KCS to assess if this condensing enzyme was mechanistically related to the well characterized soluble condensing enzymes of fatty acid and flavonoid syntheses. A C223A mutant enzyme lacking the acylation site was unable to carry out decarboxylation of malonyl-CoA even when 18:1-CoA was present. Mutational analyses of the conserved Asn424 and His391 residues indicated the importance of these residues for FAE1-KCS activity. The results presented here provide the initial analysis of the reaction mechanism for a membrane-bound condensing enzyme from any source and provide evidence for a mechanism similar to the soluble condensing enzymes.  相似文献   
3.
A monoclonal antibody (MoAb 11-4) was raised against K562, a human erythroleukemia cell line sensitive to natural killer cell-mediated cytotoxicity (NK-CMC). Immunological analysis revealed MoAb to be IgG2b. Alone, the MoAb was not cytotoxic for K562 and did not bind to the effector cells, but the addition of this antibody to macrophage-depleted human peripheral blood lymphocytes increased killing of K562 in a 4-hr NK-CMC assay. The maximum increase in NK-CMC was observed when MoAb 11-4 was added to target cells prior to the formation of effector/target cell conjugates. This effect was dose dependent, was specific for K562, and, contrary to conventional antisera, occurred at very low concentrations of MoAb. When MoAb was added either to Percoll-purified large granular lymphocytes (LGL) or to LGL-depleted lymphocytes, only the latter demonstrated a significant increase in the killing of K562 in a 4-hr chromium release assay. Kinetics studies revealed that although the overall LGL-mediated lysis was only slightly increased at 4 hr, the maximum lytic activity was reached within 2 hr. These studies suggest that (1) human LGL and LGL-depleted cell populations bear Fc receptors for mouse IgG2b and (2) although the cytotoxic activities of both cell populations are increased by treatment with MoAb 11-4, the kinetics of this increase are different.  相似文献   
4.
The activity of 5-aminolaevulinate synthase, the rate-limiting enzyme of haem biosynthesis, is differentially distributed in various regions of the rat brain. The cerebellum possessed the highest enzyme activity of the eight regions studied. The cerebral cortex and the midbrain also exhibited high 5-aminolaevulinate synthase activity; the septum, hypothalamus, thalamus, amygdala and the hippocampus possessed much lower enzyme activity. However, the total porphyrin and haem contents of the different brain segments did not vary greatly. Mn2+, when administered subcutaneously to rats, effectively inhibited the activity of 5-aminolaevulinate synthase in the cerebellum, midbrain and cerebral cortex; however, repeated injections of the metal ion neither decreased the haem and porphyrin contents of the brain nor induced haem oxygenase activity. Mn2+ was not an effective inhibitor of 5-aminolaevulinate synthase activity in vitro. On the other hand, studies carried out with the liver in vivo suggested that Mn2+ may alter the turnover rate of cellular haem and haemoproteins. In that event, it is likely that the inhibition of 5-aminolaevulinate synthase by Mn2+ was in part a result of the inhibition of protein synthesis by the metal ion. It is postulated that the haem and porphyrin contents of the brain are maintained at a steady-state level, due in part to the refractoriness to inducers of the regulatory mechanism for haem catabolic enzymes and in part to the ability of the organ to utilize haem precursors derived from extraneuronal sources.  相似文献   
5.
Vegetation History and Archaeobotany - Past vegetation, fire, and climate dynamics, as well as human impact, have been reconstructed for the first time in the highlands of the Gilan province in the...  相似文献   
6.
7.
A small number of stress-responsive genes, such as those of the mitochondrial F1F0-ATP synthase complex, are encoded by both the nucleus and mitochondria. The regulatory mechanism of these joint products is mysterious. The expression of 6-kDa subunit (MtATP6), a relatively uncharacterized nucleus-encoded subunit of F0 part, was measured during salinity stress in salt-tolerant and salt-sensitive cultivated wheat genotypes, as well as in the wild wheat genotypes, Triticum and Aegilops using qRT-PCR. The MtATP6 expression was suddenly induced 3 h after NaCl treatment in all genotypes, indicating an early inducible stress-responsive behavior. Promoter analysis showed that the MtATP6 promoter includes cis-acting elements such as ABRE, MYC, MYB, GTLs, and W-boxes, suggesting a role for this gene in abscisic acid-mediated signaling, energy metabolism, and stress response. It seems that 6-kDa subunit, as an early response gene and nuclear regulatory factor, translocates to mitochondria and completes the F1F0-ATP synthase complex to enhance ATP production and maintain ion homeostasis under stress conditions. These communications between nucleus and mitochondria are required for inducing mitochondrial responses to stress pathways. Dual targeting of 6-kDa subunit may comprise as a mean of inter-organelle communication and save energy for the cell. Interestingly, MtATP6 showed higher and longer expression in the salt-tolerant wheat and the wild genotypes compared to the salt-sensitive genotype. Apparently, salt-sensitive genotypes have lower ATP production efficiency and weaker energy management than wild genotypes; a stress tolerance mechanism that has not been transferred to cultivated genotypes.  相似文献   
8.
In this investigation, copper was bioleached from a low-grade chalcopyrite ore using a chloride-containing lixiviant. In this regard, firstly, the composition of the bacterial culture media was designed to control the cost in commercial application. The bacterial culture used in this process was acclimated to the presence of chloride in the lixiviant. Practically speaking, the modified culture helped the bio-heap-leaching system operate in the chloridic media. Compared to the copper recovery from the low-grade chalcopyrite by bioleaching in the absence of chloride, bioleaching in the presence of chloride resulted in improved copper recovery. The composition of the lixiviant used in this study was a modification with respect to the basal salts in 9 K medium to optimize the leaching process. When leaching the ore in columns, 76.81 % Cu (based on solid residues of bioleaching operation) was recovered by staged leaching with lixiviant containing 34.22 mM NaCl. The quantitative findings were supported by SEM/EDS observations, X-ray elemental mapping, and mineralogical analysis of the ore before and after leaching. Finally, Adaptive neuro-fuzzy inference system (ANFIS) was used to simulate the operational parameters affecting the bioleaching operation in chloride–sulfate system.  相似文献   
9.
10.
Staphylokinase (SAK) is a promising thrombolytic agent for the treatment of patients suffering from blood-clotting disorders. To increase the potency of SAK and to minimize vessel reocclusion, a new construct bearing SAK motif fused to tsetse thrombin inhibitor (TTI) via a 20-amino acid linker with 2 RGD (2 × arginine-glycine-aspartic acid inhibiting platelet aggregation via attachment to integrin receptors of platelet) was codon optimized and expressed comparatively in Pichia pastoris GS115 as a Mut+ strain and KM71H as a Muts strain. Fusion protein was optimized in terms of best expression condition and fibrinolytic activity and compared with the rSAK. Expression level of the designed construct reached up to 175 mg/L of the culture medium after 72-hr stimulation with 2.5% methanol and remained steady for 3–4 days. The highest expression was obtained at the range of 2–3% methanol. The SAK-2RGD-TT (relative activity >82%) was more active at 25–37 °C than rSAK (relative activity of 93%). Further, it showed relative activity >80% at pH ranges of 7–9. Western blot analysis showed two bands of nearly 27 and 24 kDa at ratio of 5 to 3, respectively. The specific fibrinolytic activity of the SAK-2RGD-TTI was measured as 8,269 U/mg, and 19,616 U/mg for the nonpurified and purified proteins, respectively. Deglycosylation by using tunicamycin in culture medium resulted in higher fibrinolytic activity of SAK-2RGD-TTI (2.2 fold). Consequently, compared to the rSAK, at the same equimolar proportion, addition of RGD and TTI fragments could increase fibrinolytic activity. Also, P. pastoris can be considered as an efficient host for overexpression of the soluble SAK-2RGD-TTI with high activity without requiring a complicated purification procedure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号