首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157篇
  免费   8篇
  2022年   2篇
  2021年   9篇
  2020年   3篇
  2019年   5篇
  2018年   6篇
  2017年   5篇
  2016年   10篇
  2015年   6篇
  2014年   11篇
  2013年   12篇
  2012年   11篇
  2011年   11篇
  2010年   12篇
  2009年   6篇
  2008年   10篇
  2007年   3篇
  2006年   5篇
  2005年   3篇
  2004年   3篇
  2003年   5篇
  2002年   8篇
  2001年   3篇
  1999年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1991年   2篇
  1989年   2篇
  1988年   2篇
  1985年   1篇
  1965年   1篇
排序方式: 共有165条查询结果,搜索用时 15 毫秒
1.
Of 153 clinical isolates of shigellae examined, 64.7% belonged toShigella flexneri, 18.9% toSh. sonnei, 11.8% toSh. boydii and 4.6% toSh. dysenteriae. Part of these isolates were resistant to sulfamethoxazole and streptomycin (88.2% each), ampicillin (66.70, tetracycline (63.40 and co-trimoxazole (43.10, with levels of resistance (MIC50 and MIC90) being invariably high. Resistance to three or more drugs (multidrug resistance) was seen in 77.8% of the isolates. All the 25 strains examined for transfer of resistance contained R-plasmids, both autotransferable and non-autotransferable (mobilized by transfer factor X). The frequency of transfer of different r-determinants varied from 2.7 · 10–8 to 1.4 · 10.  相似文献   
2.
Alzheimer’s disease (AD) is characterized by the appearance of amyloid‐β plaques, neurofibrillary tangles, and inflammation in brain regions involved in memory. Using mass spectrometry, we have quantified the phosphoproteome of the CK‐p25, 5XFAD, and Tau P301S mouse models of neurodegeneration. We identified a shared response involving Siglec‐F which was upregulated on a subset of reactive microglia. The human paralog Siglec‐8 was also upregulated on microglia in AD. Siglec‐F and Siglec‐8 were upregulated following microglial activation with interferon gamma (IFNγ) in BV‐2 cell line and human stem cell‐derived microglia models. Siglec‐F overexpression activates an endocytic and pyroptotic inflammatory response in BV‐2 cells, dependent on its sialic acid substrates and immunoreceptor tyrosine‐based inhibition motif (ITIM) phosphorylation sites. Related human Siglecs induced a similar response in BV‐2 cells. Collectively, our results point to an important role for mouse Siglec‐F and human Siglec‐8 in regulating microglial activation during neurodegeneration.  相似文献   
3.
Most damaging plant diseases have been caused by viruses in the entire world. In tropical and subtropical areas, the damage caused by plant virus leads to great economic and agricultural losses. Single stranded DNA viruses (geminiviruses) are the most perilous pathogens which are responsible for major diseases in agronomic and horticultural crops. Significantly begomoviruses and mastreviruses are the biggest genus of plant infecting viruses, transmitted though Bemisia tabaci and members of Cicadellidae respectively. Plants possesses some naturally existing chemicals term as phyto-chemicals which perform important functions in the plant. Some antioxidant enzymes are used by plants for self-defense upon foreign invasion of infection. This review explains the present perceptive of influence of viral infections on phyto-chemicals, oxidative enzymes and biochemical changes occurring in the plant. Viral infection mediated phyto-chemical changes in plants mainly includes: up and down regulation of photosynthetic pigment, increase in the concentration of phenolic compounds, elevation of starch content in the leaf and up & down regulation of anti-oxidative enzymes including (GPX) guaiacol peroxidase, (PPO) polyphenol oxidase, (APX) ascorbate peroxidase, (SOD) superoxide dismutase and (CTA) catalase. These changes lead to initiation of hypersensitive response, by thicken of the leaf lamina, lignification under the leaf surface, blocking to stomatal openings, systematic cell death, generation of reactive oxidative species (ROS), activation of pathogen mediated resistance pathways i.e., production of salicylic acid and jasmonic acid. Collectively all the physiological changes in the plant due to viral infection supports the activation of defense mechanism of the plant to combat against viral infection by limiting virus in specific area, followed with the production of barriers for pathogen, accumulation of starch in the leaf and excess production of (ROS). These strategies used by the plant to prevent the spread of virus in whole plant and to minimize the risk of severe yield loss.  相似文献   
4.
The cytotoxicity in freshwater fishes due to different industrial dyes in industrial effluents is a major worldwide issue. Hematoxylin dye has a wide range of uses in textile industries and laboratories. This study was aimed to evaluate the toxic effects of hematoxylin's sublethal effect in vitro in Cirrhinus mrigala. The fish was exposed to different grading concentrations of dye in the aquarium. Fish were sacrificed and dissected to remove the kidney after exposure to hematoxylin dye for specific time intervals. Nephrotoxicity and cytotoxicity induced by this dye were detected through histopathology by using the paraffin wax method. Immediate mortality of fish was noticed against the exposure to 0.08 g/L (LC50) concentration of dye, but at 0.008 mg/L and 0.018 mg/L, it showed tremendous tissue damage in the kidneys, significant reduction in fish growth. This dye induced many alterations in the kidney such as tubular degeneration, vacuolation, shrinkage of a glomerulus, reduced lumen, congestion in the kidney, glomerulonephritis, absence of Bowmen space, necrosis of the hematopoietic interstitial tissues, clogging of tubules, necrosis in the glomerulus and increased space between glomerulus and bowmen's capsule. Although this dye has a wide range of biological and industrial applications, a minute amount of hematoxylin released in effluents is quite toxic to aquatic fauna.  相似文献   
5.
The present work aims to synthesize zinc oxide (ZnO) nanoparticles via green approaches using leaf extract of Parthenium hysterophorus. UV–vis and FT-IR tests confirmed the existence of biomolecules, active materials, and metal oxides. The X-ray diffraction structural study exposes the ZnO nanoparticles formation with hexagonal phase structures. SEM and TEM analysis reveal surface morphologies of ZnO nanoparticles and most of them are spherical with a size range of 10 nm. ZnO nanoparticles were revealed strong antimicrobial activity against both bacterial and fungal strains. The germination of seeds and vegetative growth of Sesamum indicum has been greatly improved.  相似文献   
6.
7.
Abnormal expression of cyclin-dependent kinase 2 (CDK2)/cyclin-E is detected in colorectal, ovarian, breast and prostate cancers. The study of CDK2 with a bound inhibitor revealed CDK2 as a potential therapeutic target for several proliferative diseases. Several highly selective inhibitors of CDK2 are currently undergoing clinical trials, but possibilities remain for the identification and development of novel and improved inhibitors. For example, in silico targeting of ATP-competitive inhibitors of CDKs is of special interest. A series of 3,5-diaminoindazoles was studied using molecular docking and comparative field analyses. We used post-docking short time molecular dynamics (MD) simulation to account for receptor flexibility. The three types of structures, i.e., the highest energy, lowest energy and the structure most resembling the X-ray structure (three complexes) were identified for all ligands. QM/MM energy calculations were performed using a DFT b3lyp/6–31 g* and MM OPLS-2005 force field. Conceptual DFT properties such as the interaction energy of ligand to protein, global hardness (η), HOMO density, electrostatic potential, and electron density were calculated and related to inhibitory activity. CoMFA and CoMSIA were used to account for steric and electrostatic interactions. The results of this study provide insight into the bioactive conformation, interactions involved, and the effect of different drug fragments over different biological activities.  相似文献   
8.
Photosystem II (PSII) of photosynthesis has the unique ability to photochemically oxidize water. Recently an engineered bacterioferritin photochemical ‘reaction centre’ (BFR-RC) using a zinc chlorin pigment (ZnCe6) in place of its native heme has been shown to photo-oxidize bound manganese ions through a tyrosine residue, thus mimicking two of the key reactions on the electron donor side of PSII. To understand the mechanism of tyrosine oxidation in BFR-RCs, and explore the possibility of water oxidation in such a system we have built an atomic-level model of the BFR-RC using ONIOM methodology. We studied the influence of axial ligands and carboxyl groups on the oxidation potential of ZnCe6 using DFT theory, and finally calculated the shift of the redox potential of ZnCe6 in the BFR-RC protein using the multi-conformational molecular mechanics–Poisson-Boltzmann approach. According to our calculations, the redox potential for the first oxidation of ZnCe6 in the BRF-RC protein is only 0.57 V, too low to oxidize tyrosine. We suggest that the observed tyrosine oxidation in BRF-RC could be driven by the ZnCe6 di-cation. In order to increase the efficiency of tyrosine oxidation, and ultimately oxidize water, the first potential of ZnCe6 would have to attain a value in excess of 0.8 V. We discuss the possibilities for modifying the BFR-RC to achieve this goal.  相似文献   
9.
.The fig leaf roller or Fig-tree Skeletoniser, Choreutis nemorana (Lep.: Choreutidae), is a destructive pest of fig trees found in some fig-growing areas of Iran. The larvae feed on the upper level of leaves, near the main vein. In this study, digestive carbohydrases including α-glucosidase, β-glucosidase, α-galactosidase, β-galactosidase and proteinases including trypsin, chymotrypsin and elastase were investigated. The results showed that the carbohydrases were present in the alimentary tracts of the pest. Optimum pH for α-glucosidase and β-glucosidase activity was at pH 6.0 and 7.0, respectively. Maximum activity of α-galactosidase and β-galactosidase occurred at pH 6.0. Total proteolitic activity against the substrate azocasein was optimally occurred at pH 10.0. The greatest activity of trypsin, chymotrypsin and elastase was determined at pH 10.0, 11.0 and 11.0, respectively. Zymogram analyses using nitrocellulose membrane revealed two trypsin isoforms in which one of them was completely inhibited by Soybean Kunitz inhibitor and the other was notably inhibited.  相似文献   
10.
The ATP-binding cassette (ABC) gene family is considered to be one of the largest gene families in all forms of prokaryotic and eukaryotic life. Although the ABC transporter genes have been annotated in some species, detailed information about the ABC superfamily and the evolutionary characterization of ABC genes in common carp (Cyprinus carpio) are still unclear. In this research, we identified 61 ABC transporter genes in the common carp genome. Phylogenetic analysis revealed that they could be classified into seven subfamilies, namely 11 ABCAs, six ABCBs, 19 ABCCs, eight ABCDs, two ABCEs, four ABCFs, and 11 ABCGs. Comparative analysis of the ABC genes in seven vertebrate species including common carp, showed that at least 10 common carp genes were retained from the third round of whole genome duplication, while 12 duplicated ABC genes may have come from the fourth round of whole genome duplication. Gene losses were also observed for 14 ABC genes. Expression profiles of the 61 ABC genes in six common carp tissues (brain, heart, spleen, kidney, intestine, and gill) revealed extensive functional divergence among the ABC genes. Different copies of some genes had tissue-specific expression patterns, which may indicate some gene function specialization. This study provides essential genomic resources for future studies in common carp.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号