首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   1篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2013年   1篇
  2009年   4篇
  2006年   2篇
排序方式: 共有20条查询结果,搜索用时 93 毫秒
1.
Studies on the mechanisms of neuronal amyloid-β (Aβ) internalisation are crucial for understanding the neuropathological progression of Alzheimer’s disease (AD). We here investigated how extracellular Aβ peptides are internalised and focused on three different pathways: (i) via endocytic mechanisms, (ii) via the receptor for advanced glycation end products (RAGE) and (iii) via the pore-forming protein perforin. Both Aβ40 and Aβ42 were internalised in retinoic acid differentiated neuroblastoma (RA-SH-SY5Y) cells. A higher concentration was required for Aβ40 (250 nM) compared with Aβ42 (100 nM). The internalised Aβ40 showed a dot-like pattern of distribution whereas Aβ42 accumulated in larger and distinct formations. By confocal microscopy, we showed that Aβ40 and Aβ42 co-localised with mitochondria, endoplasmic reticulum (ER) and lysosomes. Aβ treatment of human primary cortical neurons (hPCN) confirmed our findings in RA-SH-SY5Y cells, but hPCN were less sensitive to Aβ; therefore, a 20 (Aβ40) and 50 (Aβ42) times higher concentration was needed for inducing uptake. The blocking of endocytosis completely inhibited the internalisation of Aβ peptides in RA-SH-SY5Y cells and hPCN, indicating that this is a major pathway by which Aβ enters the cells. In addition, the internalisation of Aβ42, but not Aβ40, was reduced by 55 % by blocking RAGE. Finally, for the first time we showed that pore formation in cell membranes by perforin led to Aβ internalisation in hPCN. Understanding how Aβ is internalised sheds light on the pathological role of Aβ and provides further ideas of inhibitory strategies for preventing Aβ internalisation and the spreading of neurodegeneration in AD.  相似文献   
2.
Exosomes are mobile extracellular vesicles with a diameter 40 to 150 nm. They play a critical role in several processes such as the development of cancers, intercellular signaling, drug resistance mechanisms, and cell-to-cell communication by fusion onto the cell membrane of recipient cells. These vesicles contain endogenous proteins and both noncoding and coding RNAs (microRNA and messenger RNAs) that can be delivered to various types of cells. Furthermore, exosomes exist in body fluids such as plasma, cerebrospinal fluid, and urine. Therefore, they could be used as a novel carrier to deliver therapeutic nucleic-acid drugs for cancer therapy. It was recently documented that, hypoxia promotes exosomes secretion in different tumor types leading to the activation of vascular cells and angiogenesis. Cancer cell-derived exosomes (CCEs) have been used as prognostic and diagnostic markers in many types of cancers because exosomes are stable at 4°C and −70°C. CCEs have many functional roles in tumorigenesis, metastasis, and invasion. Consequently, this review presents the data about the therapeutic application of exosomes and the role of CCEs in cancer invasion, drug resistance, and metastasis.  相似文献   
3.
Tall fescue (Festuca arundinacea Schreb. subsp. arundinacea) is one of the most economically important forage grasses in cold and temperate regions of the world. In this study, we have assessed the genetic diversity and structure of wild Iranian tall fescue populations. Thirty-seven individuals from nine natural populations from northern, western, and southern Iranian mountain ranges were analyzed using six genomic-SSRs and five EST-SSRs primer pairs. Our analysis has demonstrated that transcribed EST-SSR regions showed levels of polymorphism similar to genomic-SSR regions. UPGMA, repeated bisection, and model-based Bayesian STRUCTURE clustering methods coupled with neighbor-net network were used to establish six divergent groups of individuals. F ST estimates among clusters showed moderate to low genetic structure. Within-group genetic diversity estimate H and partial correlations between genetic and geographic distances among populations suggested that western Zagros population was related to the rest of the Iranian individuals. The isolation-by-distance hypothesis was not supported by SSR data and the present geographical sampling.  相似文献   
4.
The production of a protease was investigated under conditions of high salinity by the moderately halophilic bacterium Halobacillus karajensis strain MA-2 in a basal medium containing peptone, beef extract, maltose and NaCl when the culture reached the stationary growth phase. Effect of various temperatures, initial pH, salt and different nutrient sources on protease production revealed that the maximum secretion occurred at 34°C, pH 8.0–8.5, and in the presence of gelatin. Replacement of NaCl by various concentrations of sodium nitrate in the basal medium also increased the protease production. The secreted protease was purified 24-fold with 68% recovery by a simple approach including a combination of acetone precipitation and Q-Sepharose ion exchange chromatography. The enzyme revealed a monomeric structure with a relative molecular mass of 36 kDa by running on SDS-PAGE. Maximum caseinolytic activity of the enzyme was observed at 50°C, pH 9.0 and 0.5 M NaCl, although at higher salinities (up to 3 M) activity still remained. The maximum enzyme activity was obtained at a broad pH range of 8.0–10.0, with 55 and 50% activity remaining at pH 6 and 11, respectively. Moreover, the enzyme activity was strongly inhibited by phenylmethylsulfonyl fluoride (PMSF), Pefabloc SC and EDTA; indicating that it probably belongs to the subclass of serine metalloproteases. These findings suggest that the protease secreted by Halobacillus karajensis has a potential for biotechnological applications from its haloalkaline properties point of view.  相似文献   
5.
6.
7.
More than 50% of all major drug targets are membrane proteins, and their role in cell-cell interaction and signal transduction is a vital concern. By culturing normal and malignant breast cancer cells with light or heavy isotopes of amino acids (SILAC), followed by cell fractionation, 1D gel separation of crude membrane proteins, and analysis of the digests using nanoelectrospray LC-MS/MS, we have quantified 1600 gene products that group into 997 protein families with approximately 830 membrane or membrane-associated proteins; 100 unknown, unnamed, or hypothetical proteins; and 65 protein families classified as ribosomal, heat shock, or histone proteins. A number of proteins show increased expression levels in malignant breast cancer cells, such as autoantigen p542, osteoblast-specific factor 2 (OSF-2), 4F2 heavy chain antigen, 34 kDa nucleolar scleroderma antigen, and apoptosis inhibitor 5. The expression of other proteins, such as membrane alanine aminopeptidase (CD13), epididymal protein, macroglobulin alpha2, PZP_HUMAN, and transglutaminase C, decreased in malignant breast cancer cells, whereas the majority of proteins remained unchanged when compared to the corresponding nonmalignant samples. Downregulation of CD13 and upregulation of OSF-2 were confirmed by immunohistochemistry using human tissue arrays with breast carcinomas. Furthermore, at least half the gene products displaying an expression change of 5-fold or higher have been described previously in the literature as having an association with cancerous malignancy. These results indicate that SILAC is a powerful technique that can be extended to the discovery of membrane-bound antigens that may be used to phenotype diseased cells.  相似文献   
8.
Phosphorylation by the constitutively activated BCR-ABL tyrosine kinase is associated with the pathogenesis of the human chronic myelogenous leukemia (CML). It is difficult to characterize kinase response to stimuli or drug treatment because regulatory phosphorylation events are largely transient changes affecting low abundance proteins. Stable isotope labeling with amino acids in cell culture (SILAC) has emerged as a pivotal technology for quantitative proteomics. By metabolically labeling proteins with light or heavy tyrosine, we are able to quantify the change in phosphorylation of BCR-ABL kinase and its substrates in response to drug treatment in human CML cells. In this study, we observed that BCR-ABL kinase is phosphorylated at tyrosines 393 and 644, and that SH2-domain containing inositol phosphatase (SHIP)-2 and downstream of kinase (Dok)-2 are phosphorylated at tyrosine 1135 and 299, respectively. Based on the relative intensity of isotopic peptide pairs, we demonstrate that the level of phosphorylation of BCR-ABL kinase as well as SHIP-2 and Dok-2 is reduced approximately 90% upon treatment with Imatinib, a specific inhibitor of BCR-ABL kinase. Furthermore, proteins, such as SHIP-1, SH2-containing protein (SHC) and Casitas B-lineage lymphoma proto-oncogene (CBL), are also regulated by Imatinib. These results demonstrate the simplicity and utility of SILAC as a method to quantify dynamic changes in phosphorylation at specific sites in response to stimuli or drug treatment in cell culture.  相似文献   
9.
10.
Cardiovascular disease (CVD) is the leading cause of mortality globally. There are few useful markers available for CVD risk stratification that has proven clinical utility. Scavenger receptor B type I (SR-BI) is a cell surface protein that plays a major role in cholesterol homeostasis through its interaction with high-density lipoprotein-cholesterol (HDL-C) esters (CE). HDL delivers CE to the liver through selective uptake by the SR-BI. SR-BI also regulates the inflammatory response. It has been shown that SR-BI overexpression has beneficial, protective effects in atherogenesis, and there is considerable interest in developing antiatherogenic strategies that involve SR-BI-mediated increases in reverse cholesterol transport through HDL and/or low-density lipoprotein. Further investigations are essential to explore the clinical utility of this approach. Moreover, there is growing evidence showing associations between genetic variants with modulation of SR-BI function that may, thereby, increase CVD risk. The aim of the current review was to provide an overview of the possible molecular mechanisms by which SR-BI may affect CVD risk, and the clinical implications of this, with particular emphasis on preclinical studies on genetic changes of SR-BI and CVD risk.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号