首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   1篇
  2019年   2篇
  2018年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2009年   2篇
  2007年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.

Background

Recent studies show the importance of interactions between CD47 expressed on acute myeloid leukemia (AML) cells and the inhibitory immunoreceptor, signal regulatory protein-alpha (SIRPα) on macrophages. Although AML cells express SIRPα, its function has not been investigated in these cells. In this study we aimed to determine the role of the SIRPα in acute myeloid leukemia.

Design and Methods

We analyzed the expression of SIRPα, both on mRNA and protein level in AML patients and we further investigated whether the expression of SIRPα on two low SIRPα expressing AML cell lines could be upregulated upon differentiation of the cells. We determined the effect of chimeric SIRPα expression on tumor cell growth and programmed cell death by its triggering with an agonistic antibody in these cells. Moreover, we examined the efficacy of agonistic antibody in combination with established antileukemic drugs.

Results

By microarray analysis of an extensive cohort of primary AML samples, we demonstrated that SIRPα is differentially expressed in AML subgroups and its expression level is dependent on differentiation stage, with high levels in FAB M4/M5 AML and low levels in FAB M0–M3. Interestingly, AML patients with high SIRPα expression had a poor prognosis. Our results also showed that SIRPα is upregulated upon differentiation of NB4 and Kasumi cells. In addition, triggering of SIRPα with an agonistic antibody in the cells stably expressing chimeric SIRPα, led to inhibition of growth and induction of programmed cell death. Finally, the SIRPα-derived signaling synergized with the activity of established antileukemic drugs.

Conclusions

Our data indicate that triggering of SIRPα has antileukemic effect and may function as a potential therapeutic target in AML.  相似文献   
2.
3.
4.
Molecular and Cellular Biochemistry - Oxidative stress has been involved in the aging process and the pathogenesis of type-2 diabetes, which is a serious health problem worldwide. This study...  相似文献   
5.
6.
In this study, we explored whether polymorphisms in insulin receptor (INSR), adiponectin (ADIPOQ), parathyroid hormone (PTH), and vitamin D receptor (VDR) genes are associated with polycystic ovary syndrome (PCOS). A total of 362 subjects, including 181 women with PCOS and 181 controls were enrolled in this case-control study. Two SNPs (rs2059806 and rs1799817) in the INSR gene, two SNPs (rs2241766 and rs1501299) in the ADIPOQ gene, one SNP (rs6256) in the PTH gene, and one SNP (rs757343) in the VDR gene were analyzed using PCR-RFLP method. We observed no significant difference in genotype and allele frequencies between the women with PCOS and controls for the rs2059806, rs1799817, rs1501299, rs6256, and rs757343 polymorphisms either before or after adjustment for confounding factors including age and BMI. However, the ADIPOQ rs2241766 “TT” genotype compared with “TG and GG” genotypes was associated with a 1.93-fold increased risk for PCOS (P = 0.006, OR = 1.93, 95% CI = 1.20–3.11), and the differences remained significant after adjustment for age and BMI (P = 0.039, OR = 1.72, 95% CI = 1.03–2.86). Furthermore, the ADIPOQ rs2241766 “T” allele was significantly overrepresented in women with PCOS than controls (P = 0.006; OR = 1.80, 95% CI = 1.18–2.70), and the difference remained significant after Bonferroni correction. Our findings suggest that the ADIPOQ rs2241766 “TT” genotype is a marker of increased PCOS susceptibility. This study also indicates for the first time that there are no significant association between INSR rs2059806, PTH rs6256, and VDR rs757343 gene polymorphisms and PCOS risk. However, these data remain to be confirmed in larger studies and in other populations.  相似文献   
7.
8.
Methylmercury (MeHg) is an extremely important environmental toxicant posing serious health risks to human health and a big source of environmental pollutant. Numerous evidence available showing a link between nervous system toxicity and MeHg exposure. Other forms of mercury are reason of metabolic toxic effects and alteration of DNA in the human body. The sources of exposure could be occupational or other environmental settings. In the present study MeHg was orally gavaged to mice, at doses of 2.5, 5, and 10 mg/kg for 4 weeks. Fasting hyperglycemia, activity of hepatic phoshphoenolpyruvate carboxykinase and glucose 6-phoshphate were reported high as compared to control group. Inflammatory markers like, tumor necrosis factor α, the actual end product of inflammatory mediators’ cascade pathway was also raised in comparison to control group. Hyperinsulinemia observed in serum showed clear understanding of mercury induced insulin resistance. Moreover, tissue damage due to increased oxidative stress markers like, hepatic lipid peroxidation, 8-deoxygunosine, reactive oxygen species, and carbonyl groups was significantly higher as compared to control group. MeHg caused a significant reduction in antioxidant markers like ferric reducing antioxidant power and total thiol molecules. The present study highlighted that activity of key enzymes involved in glucose metabolism is changed, owing to MeHg induced toxicity in the liver. Induction of similar toxic effects assumed to be stimulated by the production of high quantity free radicals.  相似文献   
9.
Ubiquitination of cytokine receptors controls intracellular receptor routing and signal duration, but the underlying molecular determinants are unclear. The suppressor of cytokine signaling protein SOCS3 drives lysosomal degradation of the granulocyte colony-stimulating factor receptor (G-CSFR), depending on SOCS3-mediated ubiquitination of a specific lysine located in a conserved juxtamembrane motif. Here, we show that, despite ubiquitination of other lysines, positioning of a lysine within the membrane-proximal region is indispensable for this process. Neither reallocation of the motif nor fusion of ubiquitin to the C-terminus of the G-CSFR could drive lysosomal routing. However, within this region, the lysine could be shifted 12 amino acids toward the C-terminus without losing its function, arguing against the existence of a linear sorting motif and demonstrating that positioning of the lysine relative to the SOCS3 docking site is flexible. G-CSFR ubiquitination peaked after endocytosis, was inhibited by methyl-β-cyclodextrin as well as hyperosmotic sucrose and severely reduced in internalization-defective G-CSFR mutants, indicating that ubiquitination mainly occurs at endosomes. Apart from elucidating structural and spatio-temporal aspects of SOCS3-mediated ubiquitination, these findings have implications for the abnormal signaling function of G-CSFR mutants found in severe congenital neutropenia, a hematopoietic disorder with a high leukemia risk.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号