首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   1篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2009年   2篇
  2008年   2篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
Francisella tularensis, the causative agent of tularemia, is one of the deadliest agents of biological warfare and bioterrorism. Extremely high virulence of this bacterium is associated with its ability to dampen or subvert host innate immune response. The objectives of this study were to identify factors and understand the mechanisms of host innate immune evasion by F. tularensis. We identified and explored the pathogenic role of a mutant interrupted at gene locus FTL_0325, which encodes an OmpA-like protein. Our results establish a pathogenic role of FTL_0325 and its ortholog FTT0831c in the virulent F. tularensis SchuS4 strain in intramacrophage survival and suppression of proinflammatory cytokine responses. This study provides mechanistic evidence that the suppressive effects on innate immune responses are due specifically to these proteins and that FTL_0325 and FTT0831c mediate immune subversion by interfering with NF-κB signaling. Furthermore, FTT0831c inhibits NF-κB activity primarily by preventing the nuclear translocation of p65 subunit. Collectively, this study reports a novel F. tularensis factor that is required for innate immune subversion caused by this deadly bacterium.  相似文献   
2.
Francisella tularensis is the causative agent of a fatal human disease, tularemia. F. tularensis was used in bioweapon programs in the past and is now classified as a category A select agent owing to its possible use in bioterror attacks. Despite over a century since its discovery, an effective vaccine is yet to be developed. In this study four transposon insertion mutants of F. tularensis live vaccine strain (LVS) in Na/H antiporter (FTL_0304), aromatic amino acid transporter (FTL_0291), outer membrane protein A (OmpA)-like family protein (FTL_0325) and a conserved hypothetical membrane protein gene (FTL_0057) were evaluated for their attenuation and protective efficacy against F. tularensis SchuS4 strain. All four mutants were 100–1000 fold attenuated for virulence in mice than parental F. tularensis. Except for the FTL_0304, single intranasal immunization with the other three mutants provided 100% protection in BALB/c mice against intranasal challenge with virulent F. tularensis SchuS4. Differences in the protective ability of the FTL_0325 and FTL_0304 mutant which failed to provide protection against SchuS4 were investigated further. The results indicated that an early pro-inflammatory response and persistence in host tissues established a protective immunity against F. tularensis SchuS4 in the FTL_0325 immunized mice. No differences were observed in the levels of serum IgG antibodies amongst the two vaccinated groups. Recall response studies demonstrated that splenocytes from the FTL_0325 mutant immunized mice induced significantly higher levels of IFN-γ and IL-17 cytokines than the FTL_0304 immunized counterparts indicating development of an effective memory response. Collectively, this study demonstrates that persistence of the vaccine strain together with its ability to induce an early pro-inflammatory innate immune response and strong memory responses can discriminate between successful and failed vaccinations against tularemia. This study describes a live attenuated vaccine which may prove to be an ideal vaccine candidate for prevention of respiratory tularemia.  相似文献   
3.
Francisella tularensis is an intracellular pathogen whose survival is in part dependent on its ability to resist the microbicidal activity of host-generated reactive oxygen species (ROS) and reactive nitrogen species (RNS). In numerous bacterial pathogens, CuZn-containing superoxide dismutases (SodC) are important virulence factors, localizing to the periplasm to offer protection from host-derived superoxide radicals (O2). In the present study, mutants of F. tularensis live vaccine strain (LVS) deficient in superoxide dismutases (SODs) were used to examine their role in defense against ROS/RNS-mediated microbicidal activity of infected macrophages. An in-frame deletion F. tularensis mutant of sodCsodC) and a F. tularensis ΔsodC mutant with attenuated Fe-superoxide dismutase (sodB) gene expression (sodB ΔsodC) were constructed and evaluated for susceptibility to ROS and RNS in gamma interferon (IFN-γ)-activated macrophages and a mouse model of respiratory tularemia. The F. tularensis ΔsodC and sodB ΔsodC mutants showed attenuated intramacrophage survival in IFN-γ-activated macrophages compared to the wild-type F. tularensis LVS. Transcomplementing the sodC gene in the ΔsodC mutant or inhibiting the IFN-γ-dependent production of O2 or nitric oxide (NO) enhanced intramacrophage survival of the sod mutants. The ΔsodC and sodB ΔsodC mutants were also significantly attenuated for virulence in intranasally challenged C57BL/6 mice compared to the wild-type F. tularensis LVS. As observed for macrophages, the virulence of the ΔsodC mutant was restored in ifn−/−, inos/, and phox/ mice, indicating that SodC is required for resisting host-generated ROS. To conclude, this study demonstrates that SodB and SodC act to confer protection against host-derived oxidants and contribute to intramacrophage survival and virulence of F. tularensis in mice.Francisella tularensis is considered a potential biological threat due to its extreme infectivity, ease of artificial dissemination via aerosols, and substantial capacity to cause illness and death. A hallmark of all F. tularensis subspecies is their ability to survive and replicate within macrophages (18) and other cell types (6, 11, 25, 28). While recent work has furthered our understanding of F. tularensis virulence mechanisms, little is known with respect to its ability to resist the microbicidal production of reactive oxygen species (ROS) or reactive nitrogen species (RNS).Superoxide dismutases (SODs) are metalloproteins that are classified according to their coordinating active site metals. SODs catalyze the dismutation of the highly reactive superoxide (O2) anion to hydrogen peroxide (H2O2) and O2 (26). The dismutation of O2 prevents accumulation of microbicidal ROS and RNS in infected macrophages. Three major categories of SODs have been identified in bacteria and include Mn-, Fe-, and CuZn-containing SODs (SodA, SodB, and SodC, respectively) and are required for aerobic survival (27). The F. tularensis genome encodes SodB (FTL_1791) and SodC (FTL_0380). In several intracellular bacterial pathogens, SodC is an important virulence factor, and its localization to the periplasmic space protects bacteria from host-derived O2 and NO radicals (8, 9, 21, 32). Moreover, many virulent bacteria possess two copies of the sodC gene (4). The evolutionary maintenance of an extra sodC gene copy suggests that it serves some essential function in survival (4). As an intracellular pathogen, F. tularensis is exposed to ROS and RNS generated by inflammatory cells during the macrophage activation process, which suggests that SODs may play an important role in its intracellular survival and pathogenesis. We have demonstrated that decreases in SodB activity render F. tularensis sensitive to ROS and attenuate virulence in mice (2). However, the contribution of F. tularensis SodC in virulence and intramacrophage survival has not been defined. In this study we have constructed a F. tularensis sodC mutant (ΔsodC) and a F. tularensis sodBC double mutant (sodB ΔsodC) and determined that SodC in conjunction with SodB primarily protects the pathogen from host-derived ROS and is required for intramacrophage survival and virulence of F. tularensis in mice.  相似文献   
4.

Medicinal and aromatic plants possess pharmacological properties (antidiabetes, anticancer, antihypertension, anticardiovascular, antileprosy, etc.) because of their potential to synthesize a wide range of therapeutic bioactive secondary metabolites. The concentration of bioactive secondry metabolites depends on plant species, local environment, soil type and internal microbiome. The internal microbiome of medicinal plants plays the crucial role in the production of bioactive secondary metabolites, namely alkaloids, steroids, terpenoids, peptides, polyketones, flavonoids, quinols and phenols. In this review, the host specific secondry metabolites produced by endophytes, their therapeutic properties and host-endophytes interaction in relation to production of bioactive secondry metaboloites and the role of endophytes in enhancing the production of bioactive secondry metabolites is discussed. How biological nitrogen fixation, phosphorus solubilization, micronutrient uptake, phytohormone production, disease suppression, etc. can play a vital role in enhacing the plant growth and development.The role of endophytes in enhancing the plant growth and content of bioactive secondary metabolites in medicinal and aromatic plants in a sustainable mode is highlighted.

  相似文献   
5.
Molecular Biology Reports - Salmonella Typhimurium survives and replicates inside the oxidative environment of phagocytic cells. Proteins, because of their composition and location, are the...  相似文献   
6.
A simple, environmentally benign and highly proficient microwave assisted one-pot approach for the synthesis of antimicrobial spiropyrrolidine/thiapyrrolizidine oxindole derivatives is reported assembling two pharmacophoric moieties (1,3-indanedione and pyrrolidine/thiapyrrolizidine) in a single molecular framework via three-component 1,3-dipolar cycloaddition reaction of substituted isatin, sarcosine/1,3-thiazoles-4-carboxylic acid and Knoevenagel adduct (2-Cyano-3-phenyl-acrylic acid ethyl ester or 2-Benzylidene-malononitrile) in 2,2,2-trifluoroethanol as a reusable green solvent. Good functional group tolerance and broad scope of usable substrates are other prominent features of the present methodology with high degree of chemo-, regio- and stereoselectivity. The stereochemistry of synthesized compounds was confirmed by single crystal X-ray analysis. All the synthetic compounds were examined for their antimicrobial potential. The synthesized compounds having pyrrolothiazole moiety showed excellent activity against K. pneumoniae as compared to others and even more inhibitory activity than the mentioned drugs, i.e. compounds 6a (MIC = 0.09 μg/mL), 6b (MIC = 0.045 μg/mL), 6c (MIC = 0.005 μg/mL), 6d (MIC = 0.19 μg/mL). Additionally, compound 6c has shown better binding affinity against New Delhi Metallo-beta-Lactamase-1 (NDM-1) protein in computational docking studies.  相似文献   
7.
Intraphagocytic survival of Salmonella Typhimurium (ST) depends (at least in part) upon its ability to repair oxidant-damaged macromolecules. Met residues either free or in protein bound form are highly susceptible to phagocyte-generated oxidants. Oxidation of Mets leads to Met-SO formation, consequently loss of protein functions that results in cell death. Methionine sulfoxide reductase (Msr) reductively repairs Met-SO to Met in the presence of thioredoxin (trx) and thioredoxin reductase (trxR). Earlier we reported that methionine sulfoxide reductase A (msrA) gene deletion strain of ST suffered oxidative stress.[1 Trivedi, R.N.; Agarwal, P.; Kumawat, M.; Pesingi, P.K.; Gupta, V.K.; Goswami, T.K.; Mahawar, M. Methionine Sulfoxide Reductase A (MsrA) Contributes to Salmonella Typhimurium Survival Against Oxidative Attack of Neutrophils. Immunobiology 2015, 220(12), 13221327.[Crossref], [PubMed], [Web of Science ®] [Google Scholar]] Thioredoxin system of ST comprises of two thioredoxins (trxA and trxC) and one thioredoxin reductase (trxB). Preferred trx utilized in MsrA-mediated repair of Met-SO is not known. In current study, we cloned, expressed, and purified ST TrxA, TrxB, TrxC, and MsrA in recombinant forms. The migration of TrxA, TrxB, TrxC, and MsrA proteins was approximately 10, 36, 16, and 26?kDa on SDS-gels. The nicotinamide adenine dinucleotide phosphate hydrogen (NADPH)-linked reductase assays interpreted that MsrA utilized two times more NADPH for the reduction of S-methyl p-tolyl sulfoxide when TrxA was included in the assays as compared to TrxC.  相似文献   
8.
Evaluation of selected parameters viz. initial germination percentage (IGP), soaking duration (SD), process temperature, rotation speed (rpm) and air flow rate (AFR) was performed in this research investigation for hydropriming of Pea (Pisum sativum) seeds. Three seed lots having difference in their moisture content (14.94–28.04 % d.b) and germination percentage (60–80 %) were selected in this study. Procured seed lots were subjected to variable duration of accelerated aging (40 ± 1 °C, 100 % RH) to attain necessary seed lots for experimental run. Response surface methodology (Box–Behnken design) with five factors and three-level combination was adopted, and the independent variables are germination percentage (80, 70, 60), soaking duration (45, 60, 75 min), temperature (20, 25, 30 °C), rotation speed (320, 340, 360 rpm) and air flow rate (0.411, 0.548, 0.685 m3/min). Second order polynomial equation was fitted for analyzing the experimental data and data was also subjected to analysis of variance as a part of regression analysis. Process responses which were selected to evaluate the effect of hydropriming were moisture content after hydropriming, final germination percentage, seedling length, seedling dry weight, vigor indices (VI–I and VI–II) and electrical conductivity. Regression analysis suggested that models were significant for all process responses and using numerical optimization technique, the optimal solution found was 75 % IGP, 55 min SD, 20 °C temperature, 320 rpm and 0.50 m3/min AFR. Values predicted by model were found to be at par with the results of a confirmation experiment carried out at optimum conditions.  相似文献   
9.
Research on heme oxygenase in plants has received consideration in recent years due to its several roles in development, defense, and metabolism during various environmental stresses. In the current investigation, the role of heme oxygenase (HO) 1 was evaluated in reducing heavy metal (Cd and Ni) uptake and alleviating Cd and Ni toxicity effects in the hydroponically grown seedlings of Vigna radiata var. PDM 54. Seedlings were subjected to Cd- and Ni-induced oxidative stress independently at different concentrations ranging from 10 to 100 μM. After 96 h (fourth day) of treatment, the stressed plants were harvested to study the cellular homeostasis and detoxification mechanism by examining the growth, stress parameters (LPX, H2O2 content), and non-enzymatic and enzymatic parameters (ascorbate peroxidase (APX), guaicol peroxidase (GPX), and catalase (CAT)) including HO 1. At 50 μM CdCl2 and 60 μM NiSO4, HO 1 activity was found to be highest in leaves which were 1.39 and 1.16-fold, respectively. The greatest HO 1 activity was reflected from the reduction of H2O2 content at these metal concentrations (50 μM CdCl2 and 60 μM NiSO4) which is correlated with the increasing activity of other antioxidant enzymes (CAT, APX). Thus, HO 1 works within a group that generates the defense machinery for the plant’s survival by scavenging ROS which is confirmed by a time-dependent study. Hence, it is concluded that seedlings of V. radiata were more tolerant towards metal-induced oxidative stress in which HO 1 is localized in its residential area (plastids).  相似文献   
10.
Protein exposure to oxidants such as HOCl leads to formation of methionine sulfoxide (MetSO) residues, which can be repaired by methionine sulfoxide reductase (Msr). A Helicobacter pylori msr strain was more sensitive to HOCl-mediated killing than the parent. Because of its abundance in H. pylori and its high methionine content, alkyl hydroperoxide reductase C (AhpC) was hypothesized to be prone to methionine oxidation. AhpC was expressed as a recombinant protein in Escherichia coli. AhpC activity was abolished by HOCl, while all six methionine residues of the enzyme were fully to partially oxidized. Upon incubation with a Msr repair mixture, AhpC activity was restored to nonoxidized levels and the MetSO residues were repaired to methionine, albeit to different degrees. The two most highly oxidized and then Msr-repaired methionine residues in AhpC, Met101 and Met133, were replaced with isoleucine residues by site-directed mutagenesis, either individually or together. E. coli cells expressing variant versions were more sensitive to t-butyl hydroperoxide than cells expressing native protein, and purified AhpC variant proteins had 5% to 39% of the native enzyme activity. Variant proteins were still able to oligomerize like the native version, and circular dichroism (CD) spectra of variant proteins revealed no significant change in AhpC conformation, indicating that the loss of activity in these variants was not related to major structural alterations. Our results suggest that both Met101 and Met133 residues are important for AhpC catalytic activity and that their integrity relies on the presence of a functional Msr.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号