首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   1篇
  2022年   1篇
  2021年   1篇
  2017年   1篇
  2015年   3篇
  2014年   4篇
  2013年   4篇
  2012年   5篇
  2011年   7篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2006年   3篇
  2004年   1篇
  2003年   1篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   5篇
  1994年   2篇
  1992年   1篇
  1988年   1篇
  1981年   1篇
  1976年   1篇
排序方式: 共有58条查询结果,搜索用时 156 毫秒
1.
Summary Twelve durum wheat varieties originating from 3 ecologically diverse regions and their 48 intergroup crosses were evaluated for stability of performance with respect to grain yield and certain component traits. The linear component of the genotype-environment interaction was revealed for grain yield, 100-grain weight and plant height, non-linear for tiller number whereas for grains per spike both components were equally important. However, except for tiller number, the linear component appeared to be contributing to a large extent towards the prevalent interactions. NP 404, Bijaga Yellow and Giorgio VZ 331 depicted stable performance for grain yield. However, considering all the attributes, the parents NP 404, Bijaga Yellow, Anhinga s and Mexicali 75 and hybrids NP 401 x Mexicali 75, NP 404 x Anhinga s, NP 412 x Mexicali 75, NP 404 x Gerardo VZ 466 and Anhinga s x Capeiti appeared promising. The Mexican group as a whole exhibited a more stable performance than the other two evaluated groups. Compensating shift among the component characters was evident in the case of parents as well as hybrids and stability of performance appeared to be under genetic control. Effective utilization of these two aspects through introduction in otherwise desirable varieties has been advocated.Part of Ph.D. thesis of senior author submitted to the Punjab Agricultural University  相似文献   
2.
In the budding yeast Saccharomyces cerevisiae, progress of the cell cycle beyond the major control point in G1 phase, termed START, requires activation of the evolutionarily conserved Cdc28 protein kinase by direct association with GI cyclins. We have used a conditional lethal mutation in CDC28 of S. cerevisiae to clone a functional homologue from the human fungal pathogen Candida albicans. The protein sequence, deduced from the nucleotide sequence, is 79% identical to that of S. cerevisiae Cdc28 and as such is the most closely related protein yet identified. We have also isolated from C. albicans two genes encoding putative G1 cyclins, by their ability to rescue a conditional GI cyclin defect in S. cerevisiae; one of these genes encodes a protein of 697 amino acids and is identical to the product of the previously described CCN1 gene. The second gene codes for a protein of 465 residues, which has significant homology to S. cerevisiae Cln3. These data suggest that the events and regulatory mechanisms operating at START are highly conserved between these two organisms.  相似文献   
3.
We utilize structurally targeted peptides to identify a "tC fusion switch" inherent to the coil domains of the neuronal t-SNARE that pairs with the cognate v-SNARE. The tC fusion switch is located in the membrane-proximal portion of the t-SNARE and controls the rate at which the helical bundle that forms the SNAREpin can zip up to drive bilayer fusion. When the fusion switch is "off" (the intrinsic state of the t-SNARE), zippering of the helices from their membrane-distal ends is impeded and fusion is slow. When the tC fusion switch is "on," fusion is much faster. The tC fusion switch can be thrown by a peptide that corresponds to the membrane-proximal half of the cognate v-SNARE, and binds reversibly to the cognate region of the t-SNARE. This structures the coil in the membrane-proximal domain of the t-SNARE and accelerates fusion, implying that the intrinsically unstable coil in that region is a natural impediment to the completion of zippering, and thus, fusion. Proteins that stabilize or destabilize one or the other state of the tC fusion switch would exert fine temporal control over the rate of fusion after SNAREs have already partly zippered up.  相似文献   
4.
BACKGROUND: Morbidity management is a core component of the global programme for the elimination of lymphatic filariasis. In a double-blind clinical trial, the tolerability and efficacy of Daflon (500 mg) + DEC (25 mg) or DEC (25 mg) alone, twice daily for 90 days, was studied in 26 patients with bancroftian filarial lymphoedema. RESULTS: None of the patients in either drug group reported any adverse reaction throughout the treatment period (90 days). Haematological and biochemical parameters were within normal limits and there was no significant difference between the pre-treatment (day 0) and post-treatment (day 90) values. The group receiving Daflon showed significant reduction in oedema volume from day 90 (140.6 PlusMinus; 18.8 ml) to day 360 (71.8 PlusMinus; 20.7 ml) compared to the pre-treatment (day 0, 198.4 PlusMinus; 16.5 ml) value. This accounted for a 63.8% reduction in oedema volume by day 360 (considering the pre-treatment (day 0) as 100%). In the DEC group, the changes in oedema volume (between day 1 and day 360) were not significant when compared to the pre-treatment (day 0) value. The percentage reduction at day 360 was only 9%, which was not significant (P > 0.05). CONCLUSION: This study has shown that Daflon (500 mg, twice a day for 90 days) is both safe and efficacious in reducing oedema volume in bancroftian filarial lymphoedema. Further clinical trials are essential for strengthening the evidence base on the role of this drug in the morbidity management of lymphatic filariasis.  相似文献   
5.
The cervicovaginal fluid (CVF) coating the vaginal epithelium is an important immunological mediator, providing a barrier to infection. Glycosylation of CVF proteins, such as mucins, IgG and S-IgA, plays a critical role in their immunological functions. Although multiple factors, such as hormones and microflora, may influence glycosylation of the CVF, few studies have examined their impact on this important immunological fluid. Herein we analyzed the glycosylation of cervicovaginal lavage (CVL) samples collected from 165 women under different hormonal conditions including: (1) no contraceptive, post-menopausal, (2) no contraceptive, days 1-14 of the menstrual cycle, (3) no contraceptive, days 15-28 of the menstrual cycle, (4) combined-oral contraceptive pills for at least 6 months, (5) depo-medroxyprogesterone acetate (Depo-Provera) injections for at least 6 months, (6) levonorgestrel IUD for at least 1 month. Glycomic profiling was obtained using our lectin microarray system, a rapid method to analyze carbohydrate composition. Although some small effects were observed due to hormone levels, the major influence on the glycome was the presence of an altered bacterial cohort due to bacterial vaginosis (BV). Compared to normal women, samples from women with BV contained lower levels of sialic acid and high-mannose glycans in their CVL. The change in high mannose levels was unexpected and may be related to the increased risk of HIV-infection observed in women with BV, as high mannose receptors are a viral entry pathway. Changes in the glycome were also observed with hormonal contraceptive use, in a contraceptive-dependent manner. Overall, microflora had a greater impact on the glycome than hormonal levels, and both of these effects should be more closely examined in future studies given the importance of glycans in the innate immune system.  相似文献   
6.
The development of new therapeutic strategies is necessary to reduce the worldwide social and economic impact of cardiovascular disease, which produces high rates of morbidity and mortality. A therapeutic option that has emerged in the last decade is cell therapy. The aim of this study was to compare the effect of transplanting human umbilical cord-derived stromal cells (UCSCs), human umbilical cord blood-derived endothelial cells (UCBECs) or a combination of these two cell types for the treatment of ischemic cardiomyopathy (IC) in a Wistar rat model. IC was induced by left coronary artery ligation, and baseline echocardiography was performed seven days later. Animals with a left ventricular ejection fraction (LVEF) of ≤40% were selected for the study. On the ninth day after IC was induced, the animals were randomized into the following experimental groups: UCSCs, UCBECs, UCSCs plus UCBECs, or vehicle (control). Thirty days after treatment, an echocardiographic analysis was performed, followed by euthanasia. The animals in all of the cell therapy groups, regardless of the cell type transplanted, had less collagen deposition in their heart tissue and demonstrated a significant improvement in myocardial function after IC. Furthermore, there was a trend of increasing numbers of blood vessels in the infarcted area. The median value of LVEF increased by 7.19% to 11.77%, whereas the control group decreased by 0.24%. These results suggest that UCSCs and UCBECs are promising cells for cellular cardiomyoplasty and can be an effective therapy for improving cardiac function following IC.  相似文献   
7.
Herein we describe the orientation of GST-tagged lectins on NHS-activated slides via a one-step deposition of the protein and a glutathione (GSH) scaffold. This technology overcomes the need for a premade GSH-surface to orient GST-tagged proteins, enabling us to rapidly expand the analytical capacity of lectin microarrays through addition of oriented lectins, while maintaining lectin diversity.  相似文献   
8.
9.
Glycosylation of bacterial cell surfaces is emerging as a critical factor in symbiosis, pathogenesis, cell-cell interactions and immune evasion. The lack of high-throughput analytical tools to examine bacterial glycans has been a major obstacle to the field and has hindered closer examination of the dynamics of carbohydrate variation. We have recently developed a lectin microarray for the analysis of glycoproteins. Herein we present a rapid analytical system based on this technology for the examination of bacterial glycans. The glycosylation pattern observed distinguishes closely related Escherichia coli strains from one another, providing a facile means of fingerprinting bacteria. In addition, dynamic alterations in the carbohydrate coat of a pathogenic E. coli strain are readily observed. The fast evaluation of real-time alterations in surface-carbohydrate epitopes allows examination of the dynamic role of bacterial sugars in response to external stimuli such as the immune system.  相似文献   
10.
Glycomics, i.e. the high-throughput analysis of carbohydrates, has yet to reach the level of ease and import of its counterparts, genomics and proteomics, due to the difficulties inherent in carbohydrate analysis. The advent of lectin microarray technology addresses many of these problems, providing a straightforward approach for glycomic analysis. However, current microarrays are limited to the available lectin set, which consists mainly of plant lectins isolated from natural sources. These lectins have inherent problems including inconsistent activity and availability. Also, many plant lectins are glycosylated, complicating glycomic evaluation of complex samples, which may contain carbohydrate-binding proteins. The creation of a recombinant, well-defined lectin set would resolve many of these issues. Herein, we describe an efficient strategy for the systematic creation of recombinant lectins for use in microarray technology. We present a small panel of simple-to-purify bacterially-derived lectins that show reliable activity and define their binding specificities by both carbohydrate microarray and ELISA. We utilize this panel to create a recombinant lectin microarray that is able to distinguish glycopatterns for both proteins and cell samples. This work opens the door to the establishment of a vast set of defined lectins via high-throughout approaches, advancing lectin microarray technology for glycomic analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号