首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   5篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   3篇
  2012年   11篇
  2011年   5篇
  2010年   3篇
  2009年   5篇
  2008年   5篇
  2007年   1篇
  2006年   5篇
  2005年   6篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   4篇
  2000年   3篇
  1998年   3篇
  1997年   1篇
  1992年   1篇
  1990年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   4篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
  1971年   1篇
排序方式: 共有86条查询结果,搜索用时 15 毫秒
1.
The specific contents of cytochrome P-450scc and adrenodoxin in corpora lutea of late pregnant sheep were, respectively, 1/5 and 1/8 that of corpora lutea of the oestrous cycle, suggesting lower steroidogenic enzyme capacity in the former. The contents of Complex V proteins were also lower in the corpora lutea of late pregnancy. It was observed in the immunoblots of both Complex V and cytochrome P-450scc that immunoreactive bands of molecular weights lower than the native proteins were present in the samples from corpora lutea of late pregnancy, indicative of degradation of the native enzymes. It is concluded that corpora lutea of sheep during late pregnancy have a much lower enzyme capacity for steroidogenesis than do those of the oestrous cycle (mid-luteal phase) due to a reduction in the content of cytochrome P-450scc and adrenodoxin. The reduction in the levels of steroidogenic enzyme proteins appears to be unspecific and probably reflects an overall demise in mitochondrial functions.  相似文献   
2.
The structure and function of the centrosomes from Chinese hamster ovary (CHO) cells were investigated by electron microscopy of negatively stained wholemount preparations of cell lysates. Cells were trypsinized from culture dishes, lysed with Triton X-100, sedimented onto ionized, carbon-coated grids, and negatively stained with phosphotungstate. The centrosomes from both interphase and dividing cells consisted of pairs of centrioles, a fibrous pericentriolar material, and a group of virus-like particles which were characteristic of the CHO cells and which served as markers for the pericentriolar material. Interphase centrosomes anchored up to two dozen microtubules when cells were lysed under conditions which preserved native microtubules. When Colcemid-blocked mitotic cells, initially devoid of microtubules, were allowed to recover for 10 min, microtubules formed at the pericentriolar material, but not at the centrioles. When lysates of Colcemid-blocked cells were incubated in vitro with micotubule protein purified from porcine brain tissue, up to 250 microtubules assembled at the centrosomes, similar to the number of microtubules that would normally form at the centrosome during cell division. A few microtubules could also be assembled in vitro onto the ends of isolated centrioles from which the pericentriolar material had been removed, forming characteristic axoneme- like bundles. In addition, microtubules; were assembled onto fragments of densely staining, fibrous material which was tentatively identified as periocentriolar material by its association of CHO can initiate and anchor microtubules both in vivo and in vitro.  相似文献   
3.
The last 10 years has seen a dramatic increase in our understanding of the mechanisms underlying the pregnancy-specific adaptation in cardiovascular function in general and the dramatic changes that occur in uterine artery endothelium in particular to support the growing fetus. The importance of these changes is clear from a number of studies linking restriction of uterine blood flow (UBF) and/or endothelial dysfunction and clinical conditions such as intrauterine growth retardation (IUGR) and/or preeclampsia in both humans and animal models; these topics are covered only briefly here. The recent developments that prompts this review are twofold. The first is advances in an understanding of the cell signaling processes that regulate endothelial nitric oxide synthase (eNOS) in particular (Govers R and Rabelink TJ. Am J Physiol Renal Physiol 280: F193-F206, 2001). The second is the emerging picture that uterine artery (UA) endothelial cell production of nitric oxide (NO) as well as prostacyclin (PGI2) may be as much a consequence of cellular reprogramming at the level of cell signaling as due to tonic stimuli inducing changes in the level of expression of eNOS or the enzymes of the PGI2 biosynthetic pathway (cPLA2, COX-1, PGIS). In reviewing just how we came to this conclusion and outlining the implications of such a finding, we draw mostly on data from ovine or human studies, with reference to other species only where directly relevant.  相似文献   
4.
Normal pregnancy and the follicular phase of the ovarian cycle are both estrogen-dominated physiological states that are characterized by elevations in uterine blood flow and endothelial nitric oxide synthase (eNOS) protein expression in the uterine artery (UA) endothelium. It is unknown if elevations in mRNA level account for the changes in protein or eNOS activity. We tested the hypothesis that pregnancy and the follicular phase are associated with increases in eNOS mRNA and the consequent elevated expression of eNOS protein results in increased circulating nitric oxide (NO) levels. UA were obtained from pregnant (PREG; n = 8; 110-130 days gestation; term = 145 +/- 3 days), nonpregnant luteal (LUT; n = 6), nonpregnant follicular (FOL; n = 6), and nonpregnant ovariectomized (OVEX; n = 6) sheep. Circulating NO levels were analyzed as total NO(2)-NO(3) (NO(x)). Western analysis performed on UA endothelial-isolated proteins demonstrated that eNOS protein levels were OVEX = LUT < or = FOL < PREG (P < 0.05), whereas eNOS mRNA expression (RT-PCR) in UA endothelial cells obtained by limited collagenase digestion was OVEX < LUT < FOL < PREG (P < 0.05). Pregnancy dramatically elevated eNOS protein (4.1- to 6.9-fold) and mRNA (2.4- to 6.9-fold) over LUT controls (P < 0.01). Circulating NO(x) levels were not altered by ovariectomy or the ovarian cycle but were elevated from 4.4 +/- 1.1 microM in LUT to 12 +/- 4, 22 +/- 3, and 41 +/- 3 microM at 110, 120, and 130 days gestation (P < 0.01). Systemic NO(x) levels in singleton (12.5 +/- 1.6 microM) were less (P < 0.01) than in multiple (twin 27.6 +/- 6.5 microM; triplet = 46 +/- 10 microM) pregnancies. Therefore, the follicular phase and, to a much greater extent, pregnancy are associated with elevations in UA endothelium-derived eNOS expression, although significant increases in systemic NO(x) levels were only observed in the PREG group (multiple > singleton). Thus, although UA endothelial increases in eNOS protein and mRNA levels are associated with high estrogen states, increases in local UA NO production may require additional eNOS protein activation to play its important role in the maintenance of uterine blood flow in pregnancy.  相似文献   
5.
Commensal bacteria and TLR signaling have been associated with the maintenance of intestinal homeostasis in dextran sodium sulfate-induced intestinal injury. The aim of this study was to determine the in vivo role of TLR/NF-kappaB activation in a model of commensal bacteria-induced T cell-mediated colitis. A NF-kappaB reporter gene mouse (NF-kappaBEGFP) (EGFP, enhanced GFP) was crossed to the colitogenic susceptible strain IL-10-/- and derived into germfree conditions using embryo-transfer technology. Germfree IL-10wt/wt;NF-kappaBEGFP and IL-10-/-;NF-kappaBEGFP mice (wt, wild type) were dual associated with the nonpathogenic commensal bacteria strains Enterococcus faecalis and Escherichia coli. EGFP was detected using macroimaging, confocal microscopy, and flow cytometry. IL-10-/-;MyD88-/- mice were used to assess E. faecalis/E. coli-induced TLR-dependent signaling and IL-23 gene expression. Dual-associated IL-10-/-;NF-kappaBEGFP mice developed severe inflammation by 7 wk. Macroscopic analysis showed elevated EGFP expression throughout the colon of bacteria-associated IL-10-/-;NF-kappaBEGFP mice. Confocal microscopy analysis revealed EGFP-positive enterocytes during the early phase of bacterial colonization (1 wk) in both IL-10wt/wt and IL-10-/- mice, while the signal shifted toward lamina propria T cells, dendritic cells, neutrophils, and macrophages in IL-10-/- mice during colitis (7 wk). The NF-kappaB inhibitor BAY 11-7085 attenuated E. faecalis/E. coli-induced EGFP expression and development of colitis. Additionally, E. faecalis/E. coli-induced NF-kappaB signaling and IL-23 gene expression were blocked in bone marrow-derived dendritic cells derived from IL-10-/-;MyD88-/- mice. We conclude that bacteria-induced experimental colitis involves the activation of TLR-induced NF-kappaB signaling derived mostly from mucosal immune cells. Blocking TLR-induced NF-kappaB activity may represent an attractive strategy to treat immune-mediated intestinal inflammation.  相似文献   
6.
Pregnancy and the follicular phase of the ovarian cycle show elevation of uterine blood flow and associated increases in uterine artery endothelium (UAE) endothelial nitric oxide (NO) synthase (eNOS) expression. Nonetheless, a role for increased NO production during pregnancy and the follicular phase has only been inferred by indirect measures. The recent development of a uterine artery endothelial cell model further suggests that pregnancy is associated with reprogramming of cell signaling, such that eNOS may become more Ca(2+) sensitive and be subject to regulation by Ca(2+)-independent kinases. This study describes for the first time the direct and simultaneous monitoring of NO production and intracellular free Ca(2+) concentration ([Ca(2+)](i)) in freshly isolated UAE from pregnant, follicular, and luteal sheep. The pharmacological agonists ionomycin (calcium ionophore) and thapsigargin (TG; endoplasmic reticulum Ca(2+) pump inhibitor) were used to maximally elevate [Ca(2+)](i) and fully activate eNOS as a measure of eNOS expression. NO production stimulated by ionomycin (5 microM) and TG (10 microM) were 1.95- and 2.05-fold, respectively, in pregnant-UAE and 1.34- and 1.37-fold in follicular-UAE compared with luteal-UAE. In contrast, the physiological agonist ATP (100 microM) stimulated a 3.43-fold increase in NO in pregnant-UAE and a 1.90-fold increase in follicular-UAE compared with luteal-UAE, suggesting that pregnancy and follicular phase enhance eNOS activation beyond changes in expression in vivo. 2-aminoethoxydiphenyl borate (APB; an inositol 1,4,5-trisphosphate receptor blocker) totally prevented the ATP-induced [Ca(2+)](i) response but only partially inhibited NO production. Thus pregnancy-enhanced eNOS activation in UAE is mediated through [Ca(2+)](i)-insensitive pathways as well as through a greater eNOS sensitivity to [Ca(2+)](i).  相似文献   
7.
8.
Placental blood flow, nitric-oxide (NO) levels, and endothelial NO synthase (eNOS) expression increase during human and ovine pregnancy. Shear stress stimulates NO production and eNOS expression in ovine fetoplacental artery endothelial (OFPAE) cells. Because eNOS is the rate-limiting enzyme essential for NO synthesis, its activity and expression are both closely regulated. We investigated signaling mechanisms underlying pulsatile shear stress-induced increases in eNOS phosphorylation and protein expression by OFPAE cells. The OFPAE cells were cultured at 3 dynes/cm2 shear stress, then exposed to 15 dynes/cm2 shear stress. Western blot analysis for phosphorylated ERK1/2, Akt, p38 mitogen activated protein kinase (MAPK), and eNOS showed that shear stress rapidly increased phosphorylation of ERK1/2 and Akt but not of p38 MAPK. Phosphorylation of eNOS Ser1177 under shear stress was elevated by 20 min, a response that was blocked by the phosphatidyl inositol-3-kinase (PI-3K)-inhibitors wortmannin and LY294002 but not by the mitogen activated protein kinase kinase (MEK)-inhibitor UO126. Basic fibroblast growth factor (bFGF) enhanced eNOS protein levels in static culture via a MEK-mediated mechanism, but it could not further augment the elevated eNOS protein levels otherwise induced by the 15 dynes/cm2 shear stress. Blockade of either signaling pathway changed the shear stress-induced increase in eNOS protein levels. In conclusion, shear stress induced rapid eNOS phosphorylation on Ser1177 in OFPAE cells through a PI-3K-dependent pathway. The bFGF-induced rise in eNOS protein levels in static culture was much less than those observed under flow and was blocked by inhibition of MEK. Prolonged shear stress-stimulated increases in eNOS protein were not affected by inhibition of MEK- or PI-3K-mediated pathways.  相似文献   
9.
The objective of the current study was to develop an ovine animal model for consistent study of uterine blood flow (UBF) changes during synchronized ovarian cycles regardless of season. Sheep were surgically bilaterally instrumented with uterine artery blood flow transducers and 5-7 days later implanted with a vaginal progesterone (P(4))-controlled internal drug-releasing device (CIDR; 0.3 g) for 7 days. On Day 6 of P(4), sheep were given two prostaglandin F(2 alpha) injections (7.5 mg i.m. 4 h apart). At CIDR removal, Experimental Day 0, zero (n = 9), 500 IU (n = 8), or 1000 IU (n = 7) eCG was injected i.m.; UBF was monitored continuously for 55-75 h. Jugular blood was sampled every 8 h to evaluate levels of P(4), estradiol-17 beta (E(2)beta) and luteinizing hormone (LH). The inhibitor of nitric oxide synthase, L-nitro-arginine methyl ester (L-NAME) was infused in a stepwise fashion unilaterally into one uterine artery at 48-50 h after 500 IU eCG and the effects on UBF were examined (n = 7). The zero-eCG group gradually increased UBF from a baseline of 17.4 +/- 3.9 to 80.5 +/- 1.1 ml/min. The 500-IU-eCG group increased UBF between 10 and 15 h from a baseline of 11 +/- 3.3 to 83.3 +/- 1.0 ml/min, whereas UBF for the 1000-IU-eCG group was higher (100.1 +/- 1.7 ml/min) than that seen in either of the other groups. Plasma P(4) fell to baseline within 8 h of CIDR removal, while E(2)beta rose gradually in association with elevations in UBF. LH surges occurred between 32 and 56 h after CIDR removal and the LH surge occurred earlier in the 1000-IU-eCG group than the other two groups (P < 0.01). L-NAME infusion dose dependently reduced maximum levels of UBF ipsilaterally by 54.6% +/- 6.2%, but contralaterally only by 27.4% +/- 8.5%. Regardless of season, either dose of eCG will result in analogous UBF responses. During the follicular phase, elevations in UBF are in part locally controlled by the de novo production of nitric oxide.  相似文献   
10.

Background

Porcine reproductive and respiratory syndrome virus (PRRSV) is the etiologic agent of PRRS, causing widespread chronic infections which are largely uncontrolled by currently available vaccines or other antiviral measures. Cultured monkey kidney (MARC-145) cells provide an important tool for the study of PRRSV replication. For the present study, flow cytometric and fluorescence antibody (FA) analyses of PRRSV infection of cultured MARC-145 cells were carried out in experiments designed to clarify viral dynamics and the mechanism of viral spread. The roles of viral permissiveness and the cytoskeleton in PRRSV infection and transmission were examined in conjunction with antiviral and cytotoxic drugs.

Results

Flow cytometric and FA analyses of PRRSV antigen expression revealed distinct primary and secondary phases of MARC-145 cell infection. PRRSV antigen was randomly expressed in a few percent of cells during the primary phase of infection (up to about 20–22 h p.i.), but the logarithmic infection phase (days 2–3 p.i.), was characterized by secondary spread to clusters of infected cells. The formation of secondary clusters of PRRSV-infected cells preceded the development of CPE in MARC-145 cells, and both primary and secondary PRRSV infection were inhibited by colchicine and cytochalasin D, demonstrating a critical role of the cytoskeleton in viral permissiveness as well as cell-to-cell transmission from a subpopulation of cells permissive for free virus to secondary targets. Cellular expression of actin also appeared to correlate with PRRSV resistance, suggesting a second role of the actin cytoskeleton as a potential barrier to cell-to-cell transmission. PRRSV infection and cell-to-cell transmission were efficiently suppressed by interferon-γ (IFN-γ), as well as the more-potent experimental antiviral agent AK-2.

Conclusion

The results demonstrate two distinct mechanisms of PRRSV infection: primary infection of a relatively small subpopulation of innately PRRSV-permissive cells, and secondary cell-to-cell transmission to contiguous cells which appear non-permissive to free virus. The results also indicate that an intact cytoskeleton is critical for PRRSV infection, and that viral permissiveness is a highly efficient drug target to control PRRSV infection. The data from this experimental system have important implications for the mechanisms of PRRSV persistence and pathology, as well as for a better understanding of arterivirus regulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号