首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   5篇
  2021年   1篇
  2019年   1篇
  2016年   2篇
  2015年   2篇
  2014年   6篇
  2013年   4篇
  2012年   1篇
  2011年   5篇
  2010年   3篇
  2009年   4篇
  2008年   2篇
  2007年   2篇
  2005年   3篇
  2004年   3篇
  2002年   1篇
  2001年   3篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1993年   4篇
  1990年   1篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1982年   2篇
  1980年   1篇
  1975年   1篇
排序方式: 共有67条查询结果,搜索用时 15 毫秒
1.
2.
Recent studies of mitochondrial DNA (mtDNA) variation in mammals and Drosophila have shown an excess of amino acid variation within species (replacement polymorphism) relative to the number of silent and replacement differences fixed between species. To examine further this pattern of nonneutral mtDNA evolution, we present sequence data for the ND3 and ND5 genes from 59 lines of Drosophila melanogaster and 29 lines of D. simulans. Of interest are the frequency spectra of silent and replacement polymorphisms, and potential variation among genes and taxa in the departures from neutral expectations. The Drosophila ND3 and ND5 data show no significant excess of replacement polymorphism using the McDonald-Kreitman test. These data are in contrast to significant departures from neutrality for the ND3 gene in mammals and other genes in Drosophila mtDNA (cytochrome b and ATPase 6). Pooled across genes, however, both Drosophila and human mtDNA show very significant excesses of amino acid polymorphism. Silent polymorphisms at ND5 show a significantly higher variance in frequency than replacement polymorphisms, and the latter show a significant skew toward low frequencies (Tajima's D = -1.954). These patterns are interpreted in light of the nearly neutral theory where mildly deleterious amino acid haplotypes are observed as ephemeral variants within species but do not contribute to divergence. The patterns of polymorphism and divergence at charge-altering amino acid sites are presented for the Drosophila ND5 gene to examine the evolution of functionally distinct mutations. Excess charge-altering polymorphism is observed at the carboxyl terminal and excess charge-altering divergence is detected at the amino terminal. While the mildly deleterious model fits as a net effect in the evolution of nonrecombining mitochondrial genomes, these data suggest that opposing evolutionary pressures may act on different regions of mitochondrial genes and genomes.   相似文献   
3.
4.
5.
[Purpose] To determine whether physical activity (PA), primarily the recommended 60 minutes of moderate-to-vigorous PA, is associated with gut bacterial microbiota in 10-year-old children.[Methods] The Block Physical Activity Screener, which provides minutes/day PA variables, was used to determine whether the child met the PA recommendations. 16S rRNA sequencing was performed on stool samples from the children to profile the composition of their gut bacterial microbiota. Differences in alpha diversity metrics (richness, Pielou’s evenness, and Faith’s phylogenetic diversity) by PA were determined using linear regression, whereas beta diversity (unweighted and weighted UniFrac) relationships were assessed using PERMANOVA. Taxon relative abundance differentials were determined using DESeq2.[Results] The analytic sample included 321 children with both PA and 16S rRNA sequencing data (mean age [SD] =10.2 [0.8] years; 54.2% male; 62.9% African American), where 189 (58.9%) met the PA recommendations. After adjusting for covariates, meeting the PA recommendations as well as minutes/day PA variables were not significantly associated with gut richness, evenness, or diversity (p ≥ 0.19). However, meeting the PA recommendations (weighted UniFrac R2 = 0.014, p = 0.001) was significantly associated with distinct gut bacterial composition. These compositional differences were partly characterized by increased abundance of Megamonas and Anaerovorax as well as specific Christensenellaceae_R-7_group taxa in children with higher PA.[Conclusion] Children who met the recommendations of PA had altered gut microbiota compositions. Whether this translates to a reduced risk of obesity or associated metabolic diseases is still unclear.  相似文献   
6.
A hallmark of human cytomegalovirus (HCMV) infection is the characteristic enlargement of the host cells (i.e., cytomegaly). Because iron (Fe) is required for cell growth and Fe chelators inhibit viral replication, we investigated the effects of HCMV infection on Fe homeostasis in MRC-5 fibroblasts. Using the metallosensitive fluorophore calcein and the Fe chelator salicylaldehyde isonicotinoyl hydrazone (SIH), the labile iron pool (LIP) in mock-infected cells was determined to be 1.04 ± 0.05 µM. Twenty-four hours postinfection (hpi), the size of the LIP had nearly doubled. Because cytomegaly occurs between 24 and 96 hpi, access to this larger LIP could be expected to facilitate enlargement to 375% of the initial cell size. The ability of Fe chelation by 100 µM SIH to limit enlargement to 180% confirms that the LIP plays a major role in cytomegaly. The effect of SIH chelation on the mitochondrial membrane potential (M) and morphology was studied using the mitochondrial voltage-sensitive dye JC-1. The mitochondria in mock-infected cells were heterogeneous with a broad distribution of M and were threadlike. In contrast, the mitochondria of HCMV-infected cells had a more depolarized M distributed over a narrow range and were grainlike in appearance. However, the HCMV-induced alteration in M was not affected by SIH chelation. We conclude that the development of cytomegaly is inhibited by Fe chelation and may be facilitated by an HCMV-induced increase in the LIP. cell size; mitochondria  相似文献   
7.
We (41) previously reported that Na-K-Cl-cotransporter (NKCC) function and microsomal protein expression are both dramatically reduced late in human cytomegalovirus (HCMV) infection of a human fibroblast cell line (MRC-5). We now report DNA microarray data showing that no significant HCMV-dependent NKCC gene repression can be detected 30 h postexposure (PE) to the virus. Consequently, we used plasma membrane biotinylation and subsequent subcellular fractionation in combination with semiquantitative immunoblotting and confocal microscopy to investigate the possibility that intracellular redistribution of the NKCC protein after HCMV infection could be a cause of the HCMV-induced loss of NKCC ion transport function. Our results show that the lifetime of plasmalemmal NKCC protein in quiescent, uninfected MRC-5 cells is 48 h, and <20% of the total expressed NKCC protein are in the plasma membrane. The remainder (80%) was detected as diffusely distributed, small punctate structures in the cytoplasm. Following HCMV infection: 1) NKCC protein expression in the plasmalemma was sharply reduced (75%) within 24 h PE and thereafter continued to slowly decrease; 2) total cellular NKCC protein content remained unchanged or slightly increased during the course of the viral infection; and 3) HCMV infection caused NKCC protein to accumulate in the perinuclear region late in the HCMV infection (72 h PE). Thus our results imply that, in the process of productive HCMV infection, NKCC protein continues to be synthesized, but, instead of being delivered to the plasma membrane, it is clustered in a large, detergent-soluble perinuclear structure. sodium-potassium-chloride-cotransporter; human fibroblast cell line; perinuclear accumulation  相似文献   
8.
The optimum conditions for using the method of radioimmunoprecipitation (RIP) for the detection of human immunodeficiency virus (HIV) in serum samples have been established. Out of several available cell lines persistently infected with HIV, specially selected line 17 has been chosen. The characteristic feature of this is the high and stable (under the conditions of prolonged cultivation) accumulation of virus-specific proteins in infected cells. The optimum conditions for making the test and its evaluation have also been established. The data of literature on the advantages of the method of RIP over such traditional methods as the enzyme immunoassay and immunoblotting have been confirmed. Thus, the presence of specific antibodies in several serum samples registered as false negative has been established. The intertypical reactivity of two serotypes of the virus, HIV-1 and HIV-2, has been studied. Cross reactivity of antibodies with respect to the HIV gene gag, but not with respect to viral glycoproteids, has been established. Ideas on the expediency and prospects of using RIP for the serological control of HIV infection are presented.  相似文献   
9.
The effects ofhuman cytomegalovirus (HCMV) infection onCl/HCO3exchanger activity in human lung fibroblasts (MRC-5 cells) were studiedusing fluorescent, ion-sensitive dyes. The intracellular pH(pHi) of mock- and HCMV-infectedcells bathed in a solution containing 5%CO2-25 mMHCO3 were nearly the same. However,replacement of external Clwith gluconate caused anH2DIDS-inhibitable (100 µM)increase in the pHi ofHCMV-infected cells but not in mock-infected cells. Continuous exposureto hyperosmotic external media containing CO2/HCO3caused the pHi of both cell typesto increase. The pHi remainedelevated in mock-infected cells. However, in HCMV-infected cells, thepHi peaked and then recoveredtoward control values. This pHirecovery phase was completely blocked by 100 µMH2DIDS. In the presence ofCO2/HCO3, there was an H2DIDS-sensitivecomponent of net Cl efflux(external Cl wassubstituted with gluconate) that was less in mock- than in HCMV-infected cells. When nitrate was substituted for external Cl (in the nominal absenceofCO2/HCO3),the H2DIDS-sensitive netCl efflux was much greaterfrom HCMV- than from mock-infected cells. In mock-infected cells,H2DIDS-sensitive, netCl efflux decreased aspHi increased, whereas forHCMV-infected cells, efflux increased aspHi increased. All these resultsare consistent with an HCMV-induced enhancement ofCl/HCO3exchanger activity.

  相似文献   
10.
Mammalian cells deploy autophagy to defend their cytosol against bacterial invaders. Anti‐bacterial autophagy relies on the core autophagy machinery, cargo receptors, and “eat‐me” signals such as galectin‐8 and ubiquitin that label bacteria as autophagy cargo. Anti‐bacterial autophagy also requires the kinase TBK1, whose role in autophagy has remained enigmatic. Here we show that recruitment of WIPI2, itself essential for anti‐bacterial autophagy, is dependent on the localization of catalytically active TBK1 to the vicinity of cytosolic bacteria. Experimental manipulation of TBK1 recruitment revealed that engagement of TBK1 with any of a variety of Salmonella‐associated “eat‐me” signals, including host‐derived glycans and K48‐ and K63‐linked ubiquitin chains, suffices to restrict bacterial proliferation. Promiscuity in recruiting TBK1 via independent signals may buffer TBK1 functionality from potential bacterial antagonism and thus be of evolutionary advantage to the host.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号