首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   22篇
  2023年   1篇
  2022年   3篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2016年   1篇
  2013年   4篇
  2012年   5篇
  2011年   3篇
  2010年   2篇
  2009年   5篇
  2008年   3篇
  2007年   2篇
  2006年   15篇
  2005年   5篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   5篇
  1997年   1篇
  1996年   5篇
  1995年   3篇
  1994年   4篇
  1992年   4篇
  1991年   5篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1982年   3篇
  1981年   1篇
  1979年   3篇
  1978年   1篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1970年   1篇
  1962年   1篇
  1948年   1篇
  1937年   2篇
  1936年   1篇
  1935年   1篇
  1930年   1篇
  1928年   1篇
排序方式: 共有124条查询结果,搜索用时 15 毫秒
1.
Stage-specific DNA methylation in a fungal plant pathogen.   总被引:4,自引:4,他引:0       下载免费PDF全文
Significantly more 5-methylcytosine residues were found in the DNA from the dormant sclerotia of Phymatotrichum omnivorum than in the DNA from the metabolically active mycelia of the fungus, as shown by high-pressure liquid chromatography of acid-hydrolyzed DNA digests and by restriction of the DNA with the isoschizomers MspI and HpaII. N6-Methyladenine was not detected in GATC sequences in the DNA isolated from either stage.  相似文献   
2.
Summary DNA methylation has been associated with gene activity in differentiating and developing plant tissues. The objective of this study was to determine the involvement of methylation in the expression of a gene transferred into carrot (Daucus carota L.) tissues by particle bombardment. Expression of the Dc8-GUS gene construct in response to treatments with 5-azacytidine (S-azaC) and to in vitro methylation by methylases was investigated by histochemical assay of GUS activity. The 5-azaC treatment increased the frequency of Dc8-driven GUS expression in both calli and somatic embryos. The increase occurred with treatment either to E. coli containing the plasmid insert or to the carrot tissues before bombardment. GUS expression, increased by the 5-azaC treatment, was enhanced by ABA treatment of both calli and somatic embryos and was more prominent in the latter. Increased digestion of the 5-azaC-treated plasmid DNA with EcoRII suggested that demethylation had occurred. In vitro methylation of Dc8-GUS by methylases generally resulted in a lower frequency of GUS expression. SssI methylase completely inhibited GUS expression. The level of GUS expression was correlated with the extent of methylation of the plasmid.Abbreviations ABA Abscisic Acid - 5-azaC 5-azacytidine - GUS -glucuronidase - Dc8 carrot promoter  相似文献   
3.
DNA markers for downy mildew resistance genes in sorghum.   总被引:1,自引:0,他引:1  
The random amplified polymorphic DNA technique was used to find markers for a downy mildew resistance gene in sorghum. Of the 674 random primers screened for polymorphism, 2 amplified fragments were linked to a downy mildew resistance gene in sorghum line SC414. Utilization of an existing restriction fragment length polymorphism mapping population (IS3620C x BTx623) also revealed two markers that are linked to a different resistance gene in another sorghum line, BTx623.  相似文献   
4.
Regulation of hypoxanthine transport in Neurospora crassa.   总被引:4,自引:4,他引:0       下载免费PDF全文
Hypoxanthine uptake and hypoxanthine phosphoribosyltransferase activity (EC 2.4.2.8) were determined in germinated conidia from the adenine auxotrophic strains ad-1 and ad-8 and the double mutant strain ad-1 ad-8. The mutant strain ad-1 appears to lack aminoimidazolecarboximide ribonucleotide formyltransferase (EC 2.1.2.3) or inosine 5'monophosphate cyclohydrolase (EC 3.5.1.10) activities, or both, whereas the ad-8 strain lacks adenylosuccinate synthase activity (EC 6.3.4.4). Normal (or wild-type) hypoxanthine transport capacity was found to the ad-1 conidia, whereas the ad-8 strains failed to take up any hypoxanthine. The double mutant strains showed intermediate transport capacities. Similar results were obtained for hypoxanthine phosphoribosyl-transferase activity assayed in germinated conidia. The ad-1 strain showed greatest activity, the ad-8 strain showed the least activity, and the double mutant strain showed intermediate activity levels. Ion-exchange chromatography of the growth media revealed that in the presence of NH+/4, the ad-8 strain excreted hypoxanthine or inosine, the ad-1 strain did not excrete any purines, and the ad-1 ad-8 double mutant strain excreted uric acid. In the absence of NH+/4, none of the strains excreted any detectable purine compounds.  相似文献   
5.
6.
Salicylic acid is an important signalling molecule involved in both locally and systemically induced disease resistance responses. Recent advances in our understanding of plant defence signalling have revealed that plants employ a network of signal transduction pathways, some of which are independent of salicylic acid. Evidence is emerging that jasmonic acid and ethylene play key roles in these salicylic acid-independent pathways. Cross-talk between the salicylic acid-dependent and the salicylic acid-independent pathways provides great regulatory potential for activating multiple resistance mechanisms in varying combinations.  相似文献   
7.
A new cotton variant with reduced levels of terpenoid aldehydes (sesquiterpenoids and sesterterpenoids (heliocides)) was isolated from the progeny of hemizygous cotton (Gossypium hirsutum cv. Coker 312) transformed with antisense (+)-delta-cadinene synthase cDNA. Southern analysis of leaf DNA digested with HindIII, Pst or KpnI restriction endonucleases did not detect any antisense cdn1-C1 DNA in the genome of the variant. The gossypol content in the seed of the variant was markedly lower than in the seed of T1 antisense plants. Eighty-nine percent of the variant seed had a 71.1% reduction in gossypol and the foliage of the variant plants showed a 70% reduction in gossypol and a 31% reduction in heliocides. Compared to non-transformed plants there was no reduction in the number of lysigenous glands in the seed of the variant. The cotton variant shows uncoupling of terpenoid aldehyde synthesis and gland formation. The cotton variant may have resulted from somaclonal variation occurring in the callus tissue during the transformation-regeneration process.  相似文献   
8.
Voltage gated potassium channels have been extensively studied in relation to cancer. In this review, we will focus on the role of two potassium channels, Ether à-go-go (Eag), Human ether à-go-go related gene (HERG), in cancer and their potential therapeutic utility in the treatment of cancer. Eag and HERG are expressed in cancers of various organs and have been implicated in cell cycle progression and proliferation of cancer cells. Inhibition of these channels has been shown to reduce proliferation both in vitro and vivo studies identifying potassium channel modulators as putative inhibitors of tumour progression. Eag channels in view of their restricted expression in normal tissue may emerge as novel tumour biomarkers.  相似文献   
9.
10.

Background and methods

Human metapneumovirus (hMPV) is a recently discovered respiratory virus associated with bronchiolitis, pneumonia, croup and exacerbations of asthma. Since respiratory viruses are frequently detected in patients with acute exacerbations of COPD (AE-COPD) it was our aim to investigate the frequency of hMPV detection in a prospective cohort of hospitalized patients with AE-COPD compared to patients with stable COPD and to smokers without by means of quantitative real-time RT-PCR.

Results

We analysed nasal lavage and induced sputum of 130 patients with AE-COPD, 65 patients with stable COPD and 34 smokers without COPD. HMPV was detected in 3/130 (2.3%) AE-COPD patients with a mean of 6.5 × 105 viral copies/ml in nasal lavage and 1.88 × 105 viral copies/ml in induced sputum. It was not found in patients with stable COPD or smokers without COPD.

Conclusion

HMPV is only found in a very small number of patients with AE-COPD. However it should be considered as a further possible viral trigger of AE-COPD because asymptomatic carriage is unlikely.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号