首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   1篇
  2022年   1篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   7篇
  2014年   1篇
  2013年   5篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   4篇
  2005年   8篇
  2004年   1篇
  2003年   4篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1992年   1篇
  1991年   4篇
  1986年   1篇
  1985年   4篇
  1984年   1篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
  1971年   1篇
  1969年   1篇
  1967年   2篇
排序方式: 共有67条查询结果,搜索用时 31 毫秒
1.
2.
Whereas sitosterol and 24(28)-methylene cycloartanol were competitive inhibitors (with Ki = 26 microM and 14 microM, respectively), 24(R,S)-25-epiminolanosterol was found to be a potent non-competitive inhibitor (Ki = 3.0 nM) of the S-adenosyl-L-methionine-C-24 methyl transferase from sunflower embryos. Because the ground state analog, 24(R,S)-oxidolanosterol, failed to inhibit the catalysis and 25-azalanosterol inhibited the catalysis with a Ki of 30 nM we conclude that the aziridine functions in a manner similar to the azasteriod (Rahier, A., et al., J. Biol. Chem. (1984) 259, 15215) as a transition state analog mimicking the carbonium intermediate found in the normal transmethylation reaction. Additionally, we observed that the aziridine inhibited cycloartenol metabolism (the preferred substrate for transmethylation) in cultured sunflower cells and cell growth.  相似文献   
3.
In eukaryotes, posttranslational modification by ubiquitin regulates the activity and stability of many proteins and thus influences a variety of developmental processes as well as environmental responses. Ubiquitination also plays a critical role in intracellular trafficking by serving as a signal for endocytosis. We have previously shown that the Arabidopsis thaliana ASSOCIATED MOLECULE WITH THE SH3 DOMAIN OF STAM3 (AMSH3) is a deubiquitinating enzyme (DUB) that interacts with ENDOSOMAL COMPLEX REQUIRED FOR TRANSPORT-III (ESCRT-III) and is essential for intracellular transport and vacuole biogenesis. However, physiological functions of AMSH3 in the context of its ESCRT-III interaction are not well understood due to the severe seedling lethal phenotype of its null mutant. In this article, we show that Arabidopsis AMSH1, an AMSH3-related DUB, interacts with the ESCRT-III subunit VACUOLAR PROTEIN SORTING2.1 (VPS2.1) and that impairment of both AMSH1 and VPS2.1 causes early senescence and hypersensitivity to artificial carbon starvation in the dark similar to previously reported autophagy mutants. Consistent with this, both mutants accumulate autophagosome markers and accumulate less autophagic bodies in the vacuole. Taken together, our results demonstrate that AMSH1 and the ESCRT-III-subunit VPS2.1 are important for autophagic degradation and autophagy-mediated physiological processes.  相似文献   
4.
Lithium (Li) is a trace element that is essential in the human diet due to its importance for health and proper functioning of an organism. However, the biological activity of this metal in crop plants, which are the primary dietary sources of Li, is still poorly understood. The aim of the presented study was to comparatively analyse two Li chemical forms on the growth, as well as the l-ascorbic acid content, the Li accumulation and translocation in butterhead lettuce (Lactuca sativa L. var. capitata) cv. Justyna. The plants were grown in a nutrient solution enriched with Li in the form of LiCl or LiOH at the following concentrations: 0, 2.5, 20, 50 or 100 mg?Li?dm?3. The obtained results indicate that the presence of Li+ ions in the root environment reduced the yield of edible parts of the lettuce if the Li concentration in a nutrient solution had reached 20 mg?Li?dm?3. However, a yield reduction under these conditions was found to be significant only for LiOH. In plants exposed to 50 mg?Li?dm?3, both shoot and root fresh weights (FW) significantly decreased, regardless of the supplied Li chemical form. On the other hand, under the lowest LiOH dose, a significant increase in the root FW was noted, suggesting beneficial effects of Li on the growth of lettuce plants. However, applied Li concentrations and forms did not affect the l-ascorbic acid content in the lettuce leaves. Regardless of which Li form was used, Li accumulated mainly in the root tissues. An exception was the higher concentration of this metal in the shoots than in the roots of plants supplied with 100 mg?Li?dm?3 in LiCl, and there were almost the same Li concentrations in both examined organs of plants supplied with 100 mg?Li?dm?3 in LiOH. The effectiveness of Li translocation from roots to shoots rose with increasing Li concentrations in the growth medium, and this suggests a relatively ready translocation of this metal throughout the plant. Moreover, these results suggest that Li toxicity in lettuce plants is related to a high accumulation of this element in the root and shoot tissues, causing a drastic reduction in the yield, in the presence either of LiCl or LiOH, but not affecting the l-ascorbic acid accumulation in the leaves.  相似文献   
5.
6.
7.
The regioselective acylation of cholesteryl β-d-glucoside, at the C-6 of the glucose moiety, was achieved using microbial lipases in organic solvents. With palmitic acid as an acyl donor 81 or 63% conversions of cholesteryl glucoside to its 6′-O-palmitoyl derivative were obtained using Candida antarctica or Rhizomucor miehei enzymes, respectively. High yields (64–92%) were also obtained with fatty acids 6:0–22:0 and 16:1 (n-7). The synthesis of cholesteryl (6′-O-palmitoyl)glucoside was also achieved via transesterification, using mono-, di- and tri-palmitoylglycerols or methyl and ethyl palmitate as acyl sources. With R. miehei lipase transesterification between methyl palmitate (80 mM) and cholesteryl glucoside (1 mM) proceeded after 24 h with a nearly quantitative yield (97%).  相似文献   
8.
Two extracellular tannin acyl hydrolases (TAH I and TAH II) produced by an Antarctic filamentous fungus Verticillium sp. P9 were purified to homogeneity (7.9- and 10.5-fold with a yield of 1.6 and 0.9%, respectively) and characterized. TAH I and TAH II are multimeric (each consisting of approximately 40 and 46 kDa sub-units) glycoproteins containing 11 and 26% carbohydrates, respectively, and their molecular mass is approximately 155 kDa. TAH I and TAH II are optimally active at pH of 5.5 and 25 and 20°C, respectively. Both the enzymes were activated by Mg2+and Br ions and 0.5–2.0 M urea and inhibited by other metal ions (Zn2+, Cu2+, K+, Cd2+, Ag+, Fe3+, Mn2+, Co2+, Hg2+, Pb2+ and Sn2+), anions, Tween 20, Tween 60, Tween 80, Triton X-100, sodium dodecyl sulphate, β-mercaptoethanol, α-glutathione and 4-chloromercuribenzoate. Both tannases more efficiently hydrolyzed tannic acid than methyl gallate. E a of these reactions and temperature dependence (at 0–30°C) of k cat, k cat/K m, ΔG*, ΔH* and ΔS* for both the enzymes and substrates were determined. The k cat and k cat/K m values (for both the substrates) were considerably higher for the combined preparation of TAH I and TAH II.  相似文献   
9.
Exposure of sunflower and maize plants to increasing concentrations of lithium (0?C50?mg Li dm?3) in a nutrient solution induced changes in biomass, leaf area and photosynthetic pigment accumulation, as well as levels of lipid peroxidation. The highest applied lithium dose (50?mg Li dm?3) evoked a significant reduction in the shoot biomass for both examined species, as well as necrotic spots and a reduction of the leaf area in sunflower plants. An enrichment of a nutrient solution with 5?C50?mg Li dm?3 did not significantly affect chlorophylls a and b and the carotenoid content in sunflower plants. However, in maize, a significant decrease in all pigment content under highest used lithium concentration was noted. The levels of lipid peroxidation of the cell membranes in leaves of sunflower plants and the roots of maize increased significantly in the presence of 50?mg Li dm?3, which suggests disturbances of the membrane integrity and pro-oxidant properties of the excess lithium ions. Nonetheless, in maize, an increase of shoot biomass and leaf area in the presence of 5?mg Li dm?3 was found. An analysis of the metal content indicated that lithium accumulated significantly in sunflower and maize shoots in a dose-dependent manner, but differences occurred between species. The sunflower plants accumulated considerably greater amounts of this metal than maize. The potassium content in shoots remained unchanged under lithium treatments, except for a significant increase in the potassium levels for sunflower plants grown in the presence of 50?mg Li dm?3. These results suggest that lithium at 50?mg Li dm?3 is toxic to both plant species, but the symptoms of toxicity are species-specific. Moreover, the lithium influence on plants is dose-dependent and its ions can exert toxicity at high concentrations (50?mg Li dm?3) or stimulate growth at low concentrations (5?mg Li dm?3).  相似文献   
10.
UDP-glucose-dependent glucosylation of solasodine and diosgenin by a soluble, partially purified enzyme fraction from eggplant leaves is affected in a markedly different way by some phospholipids. While glucosylation of diosgenin and some closely related spirostanols, e.g. tigogenin or yamogenin, is strongly inhibited by relatively low concentrations of several phospholipids, the glucosylation of solasodine is unaffected or even slightly stimulated. These effects depend both on the structure of the polar head group and the nature of the acyl chains present in the phospholipid. The most potent inhibitors of diosgenin glucosylation are choline-containing lipids: phosphatidylcholine (PC) and sphingomyelin (SM) but the removal of phosphocholine moiety from these phospholipids by treatment with phospholipase C results in an almost complete recovery of the diosgenin glucoside formation by the enzyme. Significant inhibition of diosgenin glucoside synthesis and stimulation of solasodine glucosylation was found only with PC molecular species containing fatty acids with chain length of 12-18 carbon atoms. PC with shorter or longer acyl chains had little effect on glucosylation of either diosgenin or solasodine. Our results indicate that interaction between the investigated glucosyltransferase and lipids are quite specific and suggest that modulation of the enzyme activity by the nature of the lipid environment may be of importance for regulation of in vivo synthesis of steroidal saponins and glycoalkaloids in eggplant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号