首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   6篇
  2023年   1篇
  2021年   2篇
  2019年   1篇
  2018年   3篇
  2016年   3篇
  2015年   7篇
  2014年   7篇
  2013年   5篇
  2012年   7篇
  2011年   18篇
  2010年   8篇
  2009年   9篇
  2008年   3篇
  2007年   12篇
  2006年   9篇
  2005年   7篇
  2004年   16篇
  2003年   11篇
  2002年   8篇
  2001年   4篇
  2000年   5篇
  1999年   2篇
  1998年   4篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   4篇
  1987年   4篇
  1986年   3篇
  1985年   2篇
  1984年   5篇
  1983年   1篇
  1982年   1篇
  1971年   1篇
排序方式: 共有182条查询结果,搜索用时 46 毫秒
1.
We examined the effects of arginine-vasopressin (AVP) C-terminal fragment 4-9, which facilitates learning and memory, on the extracellular acetylcholine (ACh) release in hippocampus of freely-moving rats using the microdialysis technique. Following administration of AVP4-9, p-Glu-Asn-Cys[Cys]-Pro-Arg-Gly-NH2, through the dialysis probe into the hippocampus, ACh levels in dialysates from the hippocampus increased markedly in dose and time dependent manner at 2-2.5 and 2.5-3 hr. AVP1-9, the parent peptide, has a similar enhancing effect on ACh release as AVP4-9. Stimulated ACh release by AVP4-9 was significantly inhibited by V1-selective receptor antagonist ([1-(beta-mercapto-beta,beta-cyclopentamethylenepropionic acid), 2-(O-methyl)-tyrosine]AVP), but not by V2-selective antagonist ([1-(beta-mercapto-beta,beta-cyclopentamethylenepropionic acid), 2-D-Ile, 4-Ile]AVP). From these observations, it is demonstrated that AVP4-9 stimulates the ACh release in rat hippocampus via mediating V1-like vasopressin receptors.  相似文献   
2.
Oxidative stress is produced in adipose tissue of obese subjects and has been associated with obesity-related disorders. Recent studies have shown that omega-3 polyunsaturated fatty acid (ω3-PUFA) has beneficial effects in preventing atherosclerotic diseases and insulin resistance in adipose tissue. However, the role of ω3-PUFA on adipocytes has not been elucidated. In this study, 3T3-L1 adipocytes were treated with ω3-PUFA and its metabolites, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or 4-hydroxy hexenal (4-HHE). ω3-PUFA and its metabolites dose-dependently increased mRNA and protein levels of the anti-oxidative enzyme, heme oxygenase-1 (HO-1); whereas no changes in the well-known anti-oxidant molecules, superoxide dismutase, catalase, and glutathione peroxidase, were observed. Knockdown of nuclear factor erythroid 2-related factor 2 (Nrf-2) significantly reduced EPA, DHA or 4-HHE-induced HO-1 mRNA and protein expression. Also, pretreatment with ω3-PUFA prevented H2O2-induced cytotoxicity in a HO-1 dependent manner. In conclusion, treatment with EPA and DHA induced HO-1 through the activation of Nrf-2 and prevented oxidative stress in 3T3-L1 adipocytes. This anti-oxidant defense may be of high therapeutic value for clinical conditions associated with systemic oxidative stress.  相似文献   
3.
Ketogenic amino acid (KAA) replacement diet has been shown to cure hepatic steatosis, a serious liver disease associated with diverse metabolic defects. In this study, we investigated the effects of KAA replacement diet on nutrition sensing signaling pathway and analyzed whether induction of hepatic autophagy was involved. Mice are fed with high fat diet (HFD) or KAA replacement in high-fat diet (30% fat in food; HFD)-fed (HFDKAAR) and sacrificed at 8, 12, 16 weeks after initiation of experimental food. Hepatic autophagy was analyzed in protein expression of several autophagy-associated molecules and in light chain-3 green fluorescent protein (LC-3 GFP) transgenic mice. HFDKAAR showed increased AMP-activated protein kinase (AMPK) phosphorylation and enhanced liver kinase B1 (LKB1) expression compared to control HFD-fed mice. The KAA-HFD-induced activation of AMPK was associated with an increased protein expression of sirtuin 1 (Sirt1), decreased forkhead box protein O3a (Foxo3a) level, and suppression of mammalian target of rapamycin (mTOR) phosphorylation compared with the HFD-fed mice. The intervention study revealed that a KAA-replacement diet also ameliorated all the established metabolic and autophagy defects in the HFD-fed mice, suggesting that a KAA-replacement diet can be used therapeutically in established diseases. These results indicate that KAA replacement in food could be a novel strategy to combat hepatic steatosis and metabolic abnormalities likely involvement of an induction of autophagy.  相似文献   
4.
AimWe performed a replication study in a Japanese population to evaluate the association between type 2 diabetes and six susceptibility loci (TMEM154, SSR1, FAF1, POU5F1, ARL15, and MPHOSPH9) originally identified by a transethnic meta-analysis of genome-wide association studies (GWAS) in 2014.MethodsWe genotyped 7,620 Japanese participants (5,817 type 2 diabetes patients and 1,803 controls) for each of the single nucleotide polymorphisms (SNPs) using a multiplex polymerase chain reaction invader assay. The association of each SNP locus with the disease was evaluated using logistic regression analysis.ResultsOf the six SNPs examined in this study, four (rs6813195 near TMEM154, rs17106184 in FAF1, rs3130501 in POU5F1 and rs4275659 near MPHOSPH9) had the same direction of effect as in the original reports, but two (rs9505118 in SSR1 and rs702634 in ARL15) had the opposite direction of effect. Among these loci, rs3130501 and rs4275659 were nominally associated with type 2 diabetes (rs3130501; p = 0.017, odds ratio [OR] = 1.113, 95% confidence interval [CI] 1.019–1.215, rs4275659; p = 0.012, OR = 1.127, 95% CI 1.026–1.238, adjusted for sex, age and body mass index), but we did not observe a significant association with type 2 diabetes for any of the six evaluated SNP loci in our Japanese population.ConclusionsOur results indicate that effects of the six SNP loci identified in the transethnic GWAS meta-analysis are not major among the Japanese, although SNPs in POU5F1 and MPHOSPH9 loci may have some effect on susceptibility to type 2 diabetes in this population.  相似文献   
5.
In rodents a high-fructose diet induces metabolic derangements similar to those in metabolic syndrome. Previously we suggested that in mouse liver an unidentified nuclear protein binding to the sterol regulatory element (SRE)-binding protein-1c (SREBP-1c) promoter region plays a key role for the response to high-fructose diet. Here, using MALDI-TOF MASS technique, we identified an X-chromosome-linked RNA binding motif protein (RBMX) as a new candidate molecule. In electrophoretic mobility shift assay, anti-RBMX antibody displaced the bands induced by fructose-feeding. Overexpression or suppression of RBMX on rat hepatoma cells regulated the SREBP-1c promoter activity. RBMX may control SREBP-1c expression in mouse liver in response to high-fructose diet.  相似文献   
6.
For measuring glutamine:fructose-6-phosphate amidotransferase (GFAT) activity in cultured cells, an enzyme method -GDH method- was set up with high-efficiency, high-sensitivity and simple operation by determining the formed glutamate. During the process of making samples, reduced glutathione (GSH, 5 mM) and glucose-6-phosphate Na2 (5 mM) were added to the buffer for scraping the cells. The range of protein content in the samples was 80-150 microg. In the GFAT activity assay, the end product reduced acetylpyridine adenine dinucleotide (APADH) was determined at 370 nm directly. The suitable concentrations of the reactants fructose-6-phosphate (F-6-P), glutamine, acetylpyridine adenine dinucleotide (APAD) and glutamate dehydrogenase (GDH) were 0.8, 6 and 0.3 mM and 6 U, respectively. However, the excess of APAD may interfere with the APADH measurement. The reaction time course was 90 min. The GFAT activity in 3T3-L1, L6, HepG2 and HIRc cells were 1.84-8.51 nmol glutamate/mg protein.min.  相似文献   
7.
Synthesis and structure-activity relationship (SAR) study of L-amino acid-based N-type calcium channel blockers are described. The compounds synthesized were evaluated for inhibitory activity against both N-type and L-type calcium channels focusing on selectivity to reduce cardiovascular side effects due to blocking of L-type calcium channels. In the course of screening of our compound library, N-(t-butoxycarbonyl)-L-aspartic acid derivative 1a was identified as an initial lead compound for a new series of N-type calcium channel blockers, which inhibited calcium influx into IMR-32 human neuroblastoma cells with an IC(50) of 3.4 microM. Compound 1a also exhibited blockade of N-type calcium channel current in electrophysiological experiment using IMR-32 cells (34% inhibition at 10 microM, n=3). As a consequence of conversion of amino acid residue of 1a, compound 12a, that include N-(t-butoxycarbonyl)-L-cysteine, was found to be a potent N-type calcium channel blocker with an IC(50) of 0.61 microM. Thus, L-cysteine was selected as a potential structural motif for further modification. Optimization of C- and N-terminals of L-cysteine using S-cyclohexylmethyl-L-cysteine as a central scaffold led to potent and selective N-type calcium channel blocker 21f, which showed improved inhibitory potency (IC(50) 0.12 microM) and 12-fold selectivity for N-type calcium channels over L-type channels.  相似文献   
8.
Phosphatidylinositol 3-kinase (PI3K) is a key molecule mediating signals of insulin in vascular smooth muscle cells (VSMCs). To examine the effect of chronic activation of PI3K on the gene expression of VSMCs, membrane-targeted p110CAAX, a catalytic subunit of PI3K, was overexpressed in rat VSMCs by adenovirus-mediated gene transfer. Similar to insulin's effects, cells overexpressing p110CAAX exhibited a 10- to 15-fold increase in monocyte chemoattractant protein-1 (MCP-1) mRNA expression as compared with the control cells. Electrophoretic mobility shift assay analysis showed that the overexpression of p110CAAX activated neither the NF-kappaB binding nor the activator protein (AP-1) binding activities. We found that two CCAAT/enhancer binding protein (C/EBP) binding sites located between 2.6 and 3.6 kb upstream of the MCP-1 gene were responsible for the induction by p110CAAX. The overexpression of C/EBP-beta and C/EBP-delta but not C/EBP-alpha caused 6- to 8-fold induction of MCP-1 promoter activity. Consistently, the overexpression of p110CAAX as well as insulin induced mRNA expression and nuclear expression of C/EBP-beta and C/EBP-delta in VSMCs. These results clearly indicate that the activation of PI3K induced proinflammatory gene expression through activating C/EBP-beta and C/EBP-delta but not NF-kappaB, which may explain the proinflammatory effect of insulin in the insulin-resistant state.  相似文献   
9.
We report that the intraperitoneal injection of Clostridium perfringens alpha-toxin into mice induces ascites. This phenomenon was monitored by measuring fluid volume and analyzing hematologic data. The mouse toxicity test provides a simple and useful model for examining C. perfringens alpha-toxin-induced vascular permeability.  相似文献   
10.
This study was performed to determine the structure-activity relationships (SAR) of L-cysteine based N-type calcium channel blockers. Basic nitrogen was introduced into the C-terminal lipophilic moiety of L-cysteine with a view toward improvement of its physicochemical properties. L-Cysteine derivative 9 was found to be a potent and selective N-type calcium channel blocker with IC(50) of 0.33 microM in calcium influx assay using IMR-32 cells and was 15-fold selective for N-type calcium channels over L-type channels. Compound 9 showed improved oral analgesic efficacy in the rat formalin induced pain model and the rat chronic constriction injury (CCI) model, which is one of the most reliable models of chronic neuropathic pain, without any significant effect on blood pressure or neurological behavior.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号