首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   1篇
  2022年   1篇
  2018年   3篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2001年   2篇
  1998年   1篇
  1997年   1篇
排序方式: 共有15条查询结果,搜索用时 31 毫秒
1.
A study of the kinetics and performance of solvent-yielding batch fermentation of individual sugars and their mixture derived from enzymic hydrolysis of sago starch byClostridium acetobutylicum showed that the use of 30 g/L gelatinized sago starch as the sole carbon source produced 11.2 g/L total solvent,i.e. 1.5–2 times more than with pure maltose or glucose used as carbon sources. Enzymic pretreatment of gelatinized sago starch yielding maltose and glucose hydrolyzates prior to the fermentation did not improve solvent production as compared to direct fermentation of gelatinized sago starch. The solvent yield of direct gelatinized sago starch fermentation depended on the activity and stability of amylolytic enzymes produced during the fermentation. The pH optima for α-amylase and glucoamylase were found to be at 5.3 and 4.0–4.4, respectively. α-Amylase showed a broad pH stability profile, retaining more than 80% of its maximum activity at pH 3.0–8.0 after a 1-d incubation at 37°C. SinceC. acetobutylicum α-amylase has a high activity and stability at low pH, this strain can potentially be employed in a one-step direct solvent-yielding fermentation of sago starch. However, theC. acetobutylicum glucoamylase was only stable at pH 4–5, maintaining more than 90% of its maximum activity after a 1-d incubation at 37°C.  相似文献   
2.
Medium development for chitinase production by Trichoderma virens was first carried out using conventional method of one-factor-at-a-time. The medium was further optimized using Central Composite Design in which response surface was generated later from the derived model. An experimental design of four variables including various initial pH values, chitin, ammonium sulphate, and methanol concentrations were created using Design Expert® Software, Version 6.0. The design consists of 30 experiments, which include 6 replicates at center points. The optimal value for each variable are 3.0 g/L, chitin; 0.1 g/L, ammonium sulphate; 0.4% (v/v), methanol; and initial pH, 4.0 with predicted chitinase activity of 0.1495 U/mL. These predicted parameters were tested in the laboratory and the final chitinase activity obtained was 0.1471 U/mL, which is almost reaching the predicted value. The optimal medium design showed an improvement of chitinase activity of 80.9% compared to activity obtained from the original Absidia medium composition.  相似文献   
3.
The profile of enzymes relevant to solvent production during direct fermentation of sago starch by Clostridium saccharobutylicum P262 in a 2 L stirred tank fermenter was determined utilizing different pH control strategies. During fermentation without pH control (initial pH of 6), the specific activity of crotonase, thiolase, and β-hydroxybutyryl-CoA dehydrogenase increased proportionally with solvent production. The highest crotonase (3,450.7 kat) and phosphotransbutyrylase activity (1,475.6 kat) was observed in fermentation where pH was maintained at 5 during the acidogenic phase and corresponded to a fairly high acid accumulation but low solvent production. During fermentation with a controlled pH of 5.25 during the sol-ventogenic phase, the highest thiolase specific activity (255.7 kat) was obtained and corresponded to the highest production of acetone. On the other hand, the highest specific activities of crotonase, β-hydroxybutyryl-CoA dehydrogenase, and phosphotransbutyrylase were observed at pH 5.5 and corresponded to the highest production of ethanol and butanol. Butyryl-CoA dehydrogenase had no significance role in solvent fermentation. These results suggested that pH control strategies were important for improvement of solvent production during direct fermentation of sago starch by C. saccharobutylicum.  相似文献   
4.
Ganoderma boninense is a white rot basidiomycete that causes basal stem rot disease of oil palm (Elaeis guineensis). The aims of this study were to identify endophytic basidiomycetes occurring naturally within oil palm and to assess their potential as biocontrol agents against G. boninense strain PER71 in vitro. In total, 376 isolates were recovered from samples collected from the root, stem and leaves of oil palm using Ganoderma‐selective medium. Ten of these isolates (2.7% of the total 376 isolates) were identified as basidiomycetes on the basis of clamp connections and the production of poroid basidiomes after incubation in glass jars containing PDA medium for 7–12 days. The isolates were identified using ITS rDNA sequencing as Neonothopanus nambi (five isolates), Schizophyllum commune (four isolates) and Ganoderma orbiforme (one isolate). The N. nambi isolates showed the greatest antagonistic activity against G. boninense, based on 73–85% inhibition of the radial growth measurements of G. boninense in dual culture and 76–100% inhibition of G. boninense growth in a culture filtrate assay. Possible modes of action for the antagonism shown by N. nambi against G. boninense in vitro include competition for substrate availability, space and the production of non‐volatile metabolites or antibiotics that inhibited the growth of G. boninense. Further in vivo investigations are required to determine the ability of N. nambi isolates to colonize oil palm seedlings and to protect oil palm from infection when challenged with G. boninense.  相似文献   
5.
Direct utilization of untreated oil palm trunk (OPT) for cellulases and xylanase production by Aspergillus fumigatus SK1 was conducted under solid-state fermentation (SSF). The highest activities of extracellular cellulases and xylanases were produced at 80% moisture level, initial pH 5.0, 1 × 108 spore/g (inoculum) with 125 μm of OPT as sole carbon source. The cellulases and xylanase activities obtained were 54.27, 3.36, 4.54 and 418.70 U/g substrates for endoglucanase (CMCase), exoglucanase (FPase), β-glucosidase and xylanase respectively. The crude cellulases and xylanase required acidic condition to retain their optimum activities (pH 4.0). Crude cellulases and xylanase were more stable at 40 °C compared to their optimum activities conditions (60 °C for FPase and 70 °C for CMCase, β-glucosidase and xylanase). SDS-PAGE and zymogram analysis showed that Aspergillus fumigatus SK1 could secrete cellulases (endoglucanase, exoglucanase and β-glucosidase), xylanase and protease. Enzymatic degradation of alkaline treated OPT with concentrated crude cellulases and xylanases resulted in producing polyoses.  相似文献   
6.
Ganoderma boninense, the main causal agent of oil palm (Elaeis guineensis) basal stem rot (BSR), severely reduces oil palm yields around the world. To reduce reliance on fungicide applications to control BSR, we are investigating the efficacy of alternative control methods, such as the application of biological control agents. In this study, we used four Streptomyces-like actinomycetes (isolates AGA43, AGA48, AGA347 and AGA506) that had been isolated from the oil palm rhizosphere and screened for antagonism towards G. boninense in a previous study. The aim of this study was to characterize these four isolates and then to assess their ability to suppress BSR in oil palm seedlings when applied individually to the soil in a vermiculite powder formulation. Analysis of partial 16S rRNA gene sequences (512 bp) revealed that the isolates exhibited a very high level of sequence similarity (>?98%) with GenBank reference sequences. Isolates AGA347 and AGA506 showed 99% similarity with Streptomyces hygroscopicus subsp. hygroscopicus and Streptomyces ahygroscopicus, respectively. Isolates AGA43 and AGA48 also belonged to the Streptomyces genus. The most effective formulation, AGA347, reduced BSR in seedlings by 73.1%. Formulations using the known antifungal producer Streptomyces noursei, AGA043, AGA048 or AGA506 reduced BSR by 47.4, 30.1, 54.8 and 44.1%, respectively. This glasshouse trial indicates that these Streptomyces spp. show promise as potential biological control agents against Ganoderma in oil palm. Further investigations are needed to determine the mechanism of antagonism and to increase the shelf life of Streptomyces formulations.  相似文献   
7.
IntroductionStrongyloides stercoralis infection can persist in the host for several decades, and patients with cancer and other clinical conditions who are exposed to immunosuppressive therapy are at risk of developing hyperinfection.Case reportThis is a case of angioimmunoblastic T-cell lymphoma (AITL) in a patient with lymphadenopathy and bulky neck mass. Severe sepsis and episodes of diarrhea were observed upon the first cycle of cyclophosphamide, doxorubicin, oncovin (vincristine) and prednisone (CHOP) regime chemotherapy preceded by high dose of dexamethasone. There was Klebsiella pneumoniae bacteremia and moderate eosinophilia. Rhabditiform S. stercoralis larvae were observed in the stool, and this was confirmed by real-time PCR. Strongyloides-specific IgG and IgG4 were also positive. The patient was treated with oral albendazole (400 mg/day) for 3 days and intravenous tazocin (4.5gm/6 hours) for 5 days; however he succumbed following multi-organ failure.ConclusionThis is likely a case of Strongyloides hyperinfection with secondary bacteremia.  相似文献   
8.
Direct fermentation of gelatinized sago starch into solvent (acetone–butanol–ethanol) by Clostridium acetobutylicum P262 was studied using a 250 ml Schott bottle anaerobic fermentation system. Total solvent production from fermentation using 30 g sago starch/l (11.03g/l) was comparable to fermentation using corn starch and about 2-fold higher than fermentation using potato or tapioca starch. At the range of sago starch concentration investigated (10–80 g/l), the highest total solvent production (18.82 g/l) was obtained at 50 g/l. The use of a mixture of organic and inorganic nitrogen source (yeast extract + NH4NO3) enhanced growth of C. acetobutylicum, starch hydrolysis and solvent production (24.47 g/l) compared to the use of yeast extract alone. This gave the yield based on sugar consumed of 0.45 g/g. Result from this study also showed that the individual concentrations of nitrogen and carbon influenced solvent production to a greater extent than did carbon to nitrogen (C/N) ratio.  相似文献   
9.
The termite gut is a highly structured microhabitat with physicochemically distinct regions. It is generally separated into the foregut, midgut and hindgut. The distribution of gut microbiota is greatly influenced by varying physicochemical conditions within the gut. Thus, each gut compartment has a unique microbial population structure. In this study, the bacterial communities of foregut, midgut and hindgut of wood-feeding higher termite, Bulbitermes sp. were analyzed in detail via metagenomic sequencing of the 16S rRNA V3-V4 region. While the microbiomes of the foregut and midgut shared a similar taxonomic pattern, the hindgut possessed more diverse bacterial phylotypes. The communities in the foregut and midgut were dominated by members of the group Bacilli and Clostridia (Firmicutes) as well as taxon Actinomycetales (Actinobacteria). The main bacterial lineage found in hindgut was Spirochaetaceae (Spirochaetes). The significant difference among the three guts was the relative abundance of the potential lignin-degrading bacteria, Actinomycetales, in both the foregut and midgut. This suggests that lignin modification was probably held in the anterior part of termite gut. Predictive functional profiles of the metagenomes using 16S rRNA marker gene showed that cell motility, energy metabolism and metabolism of cofactors and vitamins were found predominantly in hindgut microbiota, whereas xenobiotics degradation and metabolism mostly occurred in the foregut segment. This was compatible with our 16S rRNA metagenomic results showing that the lignocellulose degradation process was initiated by lignin disruption, increasing the accessibility of celluloses and hemicelluloses.  相似文献   
10.
Parasitoid wasps (Hymenoptera) play a significant role in reducing the pest population of the bagworm species Metisa plana. This study presents the abundance and DNA barcoding information of eight parasitoid wasps species, Dolichogenidea metesae (47%), Brachymeria carinata (19%), Buysmania oxymora (12%), Goryphus bunoh (7%), Pediobius anomalus (5%), Eupelmus cotoxanthae (2%), Apanteles aluella (5%), Apanteles sp.1 (3%) and that emerged from M. plana collected from three highly infested oil palm plantations in Selangor (west), Perak (north) and Johor (south) in Peninsular Malaysia. Samples of infested M. plana were collected from the field and reared in a rearing room. The parasitoid wasp species D. metesae recorded the highest emergence numbers and the broadest presence in all the sampling sites. The relationships among the parasitoids species were estimated and visualized using Neighbor Joining (NJ) phylogenetic analyses with the Ceraphronidae family as an outgroup. The resulting NJ tree showed that the identified parasitoid wasps were successfully classified into specific species and supported with bootstraps values between 55% to 100%. This study provides important information on potential biological control agents for M. plana that may be useful for the Malaysian oil palm industry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号