首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   201篇
  免费   38篇
  国内免费   1篇
  240篇
  2023年   1篇
  2021年   3篇
  2019年   1篇
  2018年   4篇
  2016年   4篇
  2015年   7篇
  2014年   7篇
  2013年   12篇
  2012年   14篇
  2011年   5篇
  2010年   10篇
  2009年   7篇
  2008年   6篇
  2007年   11篇
  2006年   12篇
  2005年   7篇
  2004年   4篇
  2003年   13篇
  2002年   4篇
  2001年   9篇
  2000年   5篇
  1999年   8篇
  1998年   6篇
  1997年   9篇
  1996年   5篇
  1995年   2篇
  1994年   3篇
  1993年   5篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   6篇
  1988年   5篇
  1987年   1篇
  1986年   5篇
  1985年   4篇
  1984年   4篇
  1983年   4篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1977年   3篇
  1975年   2篇
  1974年   1篇
  1964年   1篇
  1958年   1篇
排序方式: 共有240条查询结果,搜索用时 5 毫秒
1.
2.
The Calvin cycle enzyme ribulose-bisphosphate carboxylase/oxygenase has been purified and characterized from the thermophilic and obligately anaerobic purple sulfur bacterium, Chromatium tepidum. The enzyme is an L8S8 carboxylase with a molecular mass near 550 kDa. No evidence for a second form of the enzyme lacking small subunits was obtained. C. tepidum ribulose-bisphosphate carboxylase/oxygenase was stable to heating to temperatures of 60 degrees C and could be readily purified in an active form at room temperature. Both carboxylase and oxygenase activities of this enzyme were Mg2+-dependent and carboxylase activity was sensitive to the effector 6-phosphogluconic acid. The Km for ribulose bisphosphate for the carboxylase activity of the C. tepidum enzyme was substantially higher than that observed in mesophilic Calvin cycle autotrophs. Amino acid composition and immunological analyses of C. tepidum and Chromatium vinosum ribulose-bisphosphate carboxylases showed the enzymes to be highly related despite significant differences in heat stability. It is hypothesized that thermal stability of C. tepidum ribulose-bisphosphate carboxylase/oxygenase is due to differences in primary structure affecting folding patterns in both the large and small subunits and is clearly not the result of any unique quaternary structure of the thermostable enzyme.  相似文献   
3.
Purple phototrophic bacteria of the genus Chromatium can grow as either photoautotrophs or photoheterotrophs. To determine the growth mode of the thermophilic Chromatium species, Chromatium tepidum, under in situ conditions, we have examined the carbon isotope fractionation patterns in laboratory cultures of this organism and in mats of C. tepidum which develop in sulfide thermal springs in Yellowstone National Park. Isotopic analysis (13C/12C) of total carbon, carotenoid pigments, and bacteriochlorophyll from photoautotrophically grown cultures of C. tepidum yielded 13C fractionation factors near -20%. Cells of C. tepidum grown on excess acetate, wherein synthesis of the Calvin cycle enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase ribulose bisphosphate carboxylase) was greatly repressed, were isotopically heavier, fractionation factors of ca. -7% being observed. Fractionation factors determined by isotopic analyses of cells and pigment fractions of natural populations of C. tepidum growing in three different sulfide thermal springs in Yellowstone National Park were approximately -20%, indicating that this purple sulfur bacterium grows as a photoautotroph in nature.  相似文献   
4.
Purified malate dehydrogenases from four species of non-sulphur purple phototrophic bacteria were examined for their heat-stability, amino acid composition and antigenic relationships. Malate dehydrogenase from Rhodospirillum rubrum, Rhodobacter capsulatus and Rhodomicrobium vannielii (which are all tetrameric proteins) had an unusually high glycine content, but the enzyme from Rhodocyclus purpureus (which is a dimer) did not. R. rubrum malate dehydrogenase was extremely heat-stable relative to the other enzymes, withstanding 65 degrees C for over 1 h with no loss of activity. By contrast, malate dehydrogenase from R. vannielii lost activity above 35 degrees C, and that from R. capsulatus above 40 degrees C. Amino acid compositional relatedness and immunological studies indicated that tetrameric phototrophic-bacterial malate dehydrogenases were highly related to one another, but only distantly related to the tetrameric enzyme from Bacillus. This suggests that, despite differences in their thermal properties, the tetrameric malate dehydrogenases of non-sulphur purple bacteria constitute a distinct biochemical class of this catalyst.  相似文献   
5.
Three species of anoxygenic phototrophic heliobacteria, Heliobacterium chlorum, Heliobacterium gestii, and Heliobacillus mobilis, were studied for comparative nitrogen-fixing abilities and regulation of nitrogenase. Significant nitrogenase activity (acetylene reduction) was detected in all species grown photoheterotrophically on N2, although cells of H. mobilis consistently had higher nitrogenase activity than did cells of either H. chlorum or H. gestii. Nitrogen-fixing cultures of all three species of heliobacteria were subject to switch-off of nitrogenase activity by ammonia; glutamine also served to switch-off nitrogenase activity but only in cells of H. mobilis and H. gestii. Placing photosynthetically grown heliobacterial cultures in darkness also served to switch-off nitrogenase activity. Dark-mediated switch-off was complete in lactate-grown heliobacteria but in pyruvate-grown cells substantial rates of nitrogenase activity continued in darkness. In all heliobacteria examined ammonia was assimilated primarily through the glutamine synthetase/glutamate synthase (GS/GOGAT) pathway although significant levels of alanine dehydrogenase were present in extracts of cells of H. gestii, but not in the other species. The results suggest that heliobacteria, like phototrophic purple bacteria, are active N2-fixing bacteria and that despite their gram-positive phylogenetic roots, heliobacteria retain the capacity to control nitrogenase activity by a switch-off type of mechanism. Because of their ability to fix N2 both photosynthetically and in darkness, it is possible that heliobacteria are significant contributors of fixed nitrogen in their paddy soil habitat.  相似文献   
6.
The phylogenetically related phototrophic bacteria Rhodospirillum tenue and Rhodocyclus purpureus modulate activity of their glutamine synthetases by adenylylation/deadenylylation. Evidence for covalent modification includes the inhibitory effect of Mg2+ on the activity of glutamine synthetase extracted from cells of either species grown on excess ammonia, and the lack of Mg2+ inhibition of activity of the enzyme isolated from N2-(R. tenue) or glutamine (R. purpureus)-grown cells. In addition, snake venom phosphodiesterase treatment of glutamine synthetase from either species grown on excess ammonia relieved Mg2+ inhibition of the enzyme (as measured via the -glutamyl transferase assay), and changed the cation specificity from Mn2+ to Mg2+ (in the biosynthetic assay).  相似文献   
7.
A new species of halophilic anoxygenic purple bacteria of the genus Rhodospirillum is described. The new organism, isolated from water/sediment of the Dead Sea, was vibrio-shaped and an obligate halophile. Growth was best at 12% NaCl, with only weak growth occurring at 6% or 21% NaCl. Growth occurred at Mg2+ concentrations up to 1 M but optimal growth was obtained at 0.05–0.1 M Mg2+. Bromide was well tolerated as an alternative anion to chloride. The new organism is an obligate phototroph, growing photoheterotrophically in media containing yeast extract and acetate or a few other organic compounds. Growth of the Dead Sea Rhodospirillum species under optimal culture conditions was slow (minimum td 20 h). Cells contained bacteriochlorophyll a and carotenoids of the spirilloxanthin series and mass cultures were pink in color. Absorption spectra revealed the presence of a B875 (light-harvesting I) but no B800/B850 (light-harvesting II) photopigment complex. The new organism shares a number of properties with the previously described halophilic phototrophic bacterium Rhodospirillum salinarum and was shown to be related to this phototroph by 16S rRNA sequencing. However, because of its salinity requirements, photosynthetic properties, and isolation from the Dead Sea, the new phototroph is proposed as a new species of the genus Rhodospirillum, R. sodomense.  相似文献   
8.
9.
The objective of this study was to determine whether cells in G(0) phase are functionally distinct from those in G(1) with regard to their ability to respond to the inducers of DNA synthesis and to retard the cell cycle traverse of the G(2) component after fusion. Synchronized populations of HeLa cells in G(1) and human diploid fibroblasts in G(1) and G(0) phases were separately fused using UV-inactivated Sendai virus with HeLa cells prelabeled with [(3)H]ThdR and synchronized in S or G(2) phases. The kinetics of initiation of DNA synthesis in the nuclei of G(0) and G(1) cells residing in G(0)/S and G(1)/S dikaryons, respectively, were studied as a function of time after fusion. In the G(0)/G(2) and G(1)/G(2) fusions, the rate of entry into mitosis of the heterophasic binucleate cells was monitored in the presence of Colcemid. The effects of protein synthesis inhibition in the G(1) cells, and the UV irradiation of G(0) cells before fusion, on the rate of entry of the G(2) component into mitosis were also studied. The results of this study indicate that DNA synthesis can be induced in G(0)nuclei after fusion between G(0)- and S-phase cells, but G(0) nuclei are much slower than G(1) nuclei in responding to the inducers of DNA synthesis because the chromatin of G(0) cells is more condensed than it is in G(1) cells. A more interesting observation resulting from this study is that G(0) cells is more condensed than it is in G(1) cells. A more interesting observation resulting from this study is that G(0) cells differ from G(1) cells with regard to their effects on the cell cycle progression of the G(2) nucleus into mitosis. This difference between G(0) and G(1) cells appears to depend on certain factors, probably nonhistone proteins, present in G(1) cells but absent in G(0) cells. These factors can be induced in G(0) cells by UV irradiation and inhibited in G(1) cells by cycloheximide treatment.  相似文献   
10.
Primer sets were designed to target specific 16S ribosomal DNA (rDNA) sequences of photosynthetic bacteria, including the green sulfur bacteria, the green nonsulfur bacteria, and the members of the Heliobacteriaceae (a gram-positive phylum). Due to the phylogenetic diversity of purple sulfur and purple nonsulfur phototrophs, the 16S rDNA gene was not an appropriate target for phylogenetic rDNA primers. Thus, a primer set was designed that targets the pufM gene, encoding the M subunit of the photosynthetic reaction center, which is universally distributed among purple phototrophic bacteria. The pufM primer set amplified DNAs not only from purple sulfur and purple nonsulfur phototrophs but also from Chloroflexus species, which also produce a reaction center like that of the purple bacteria. Although the purple bacterial reaction center structurally resembles green plant photosystem II, the pufM primers did not amplify cyanobacterial DNA, further indicating their specificity for purple anoxyphototrophs. This combination of phylogenetic- and photosynthesis-specific primers covers all groups of known anoxygenic phototrophs and as such shows promise as a molecular tool for the rapid assessment of natural samples in ecological studies of these organisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号