首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   28篇
  2023年   5篇
  2022年   3篇
  2021年   6篇
  2020年   5篇
  2019年   8篇
  2018年   10篇
  2017年   7篇
  2016年   14篇
  2015年   10篇
  2014年   10篇
  2013年   15篇
  2012年   13篇
  2011年   15篇
  2010年   7篇
  2009年   7篇
  2008年   8篇
  2007年   5篇
  2006年   7篇
  2005年   4篇
  2004年   10篇
  2003年   3篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1999年   5篇
  1998年   2篇
  1997年   2篇
  1993年   2篇
  1992年   3篇
  1987年   1篇
  1986年   1篇
  1981年   1篇
  1972年   1篇
排序方式: 共有198条查询结果,搜索用时 15 毫秒
1.
Glutamate is the main excitatory amino acid, but its presence in the extracellular milieu has deleterious consequences. It may induce excitotoxicity and also compete with cystine for the use of the cystine–glutamate exchanger, blocking glutathione neosynthesis and inducing an oxidative stress-induced cell death. Both mechanisms are critical in the brain where up to 20% of total body oxygen consumption occurs. In normal conditions, the astrocytes ensure that extracellular concentration of glutamate is kept in the micromolar range, thanks to their coexpression of high-affinity glutamate transporters (EAATs) and glutamine synthetase (GS). Their protective function is nevertheless sensitive to situations such as oxidative stress or inflammatory processes. On the other hand, macrophages and microglia do not express EAATs and GS in physiological conditions and are the principal effector cells of brain inflammation. Since the late 1990s, a number of studies have now shown that both microglia and macrophages display inducible EAAT and GS expression, but the precise significance of this still remains poorly understood. Brain macrophages and microglia are sister cells but yet display differences. Both are highly sensitive to their microenvironment and can perform a variety of functions that may oppose each other. However, in the very particular environment of the healthy brain, they are maintained in a repressed state. The aim of this review is to present the current state of knowledge on brain macrophages and microglial cells activation, in order to help clarify their role in the regulation of glutamate under pathological conditions as well as its outcome.  相似文献   
2.
Arctic-boreal landscapes are experiencing profound warming, along with changes in ecosystem moisture status and disturbance from fire. This region is of global importance in terms of carbon feedbacks to climate, yet the sign (sink or source) and magnitude of the Arctic-boreal carbon budget within recent years remains highly uncertain. Here, we provide new estimates of recent (2003–2015) vegetation gross primary productivity (GPP), ecosystem respiration (Reco), net ecosystem CO2 exchange (NEE; Reco − GPP), and terrestrial methane (CH4) emissions for the Arctic-boreal zone using a satellite data-driven process-model for northern ecosystems (TCFM-Arctic), calibrated and evaluated using measurements from >60 tower eddy covariance (EC) sites. We used TCFM-Arctic to obtain daily 1-km2 flux estimates and annual carbon budgets for the pan-Arctic-boreal region. Across the domain, the model indicated an overall average NEE sink of −850 Tg CO2-C year−1. Eurasian boreal zones, especially those in Siberia, contributed to a majority of the net sink. In contrast, the tundra biome was relatively carbon neutral (ranging from small sink to source). Regional CH4 emissions from tundra and boreal wetlands (not accounting for aquatic CH4) were estimated at 35 Tg CH4-C year−1. Accounting for additional emissions from open water aquatic bodies and from fire, using available estimates from the literature, reduced the total regional NEE sink by 21% and shifted many far northern tundra landscapes, and some boreal forests, to a net carbon source. This assessment, based on in situ observations and models, improves our understanding of the high-latitude carbon status and also indicates a continued need for integrated site-to-regional assessments to monitor the vulnerability of these ecosystems to climate change.  相似文献   
3.
Difluoromethylornithine (DFMO), a selective inhibitor of ornithine decarboxylase, was used to probe the possible role of polyamines in the regulation of proliferation and steroidogenic activities of bovine adrenocortical cells in primary culture. The presence of DFMO in the culture medium not only suppressed the polyamine increase observed in proliferating control cells but resulted in a rapid depletion of the putrescine and spermidine cellular content, while spermine remained at a basal level. The proliferation of DFMO-treated cells was rapidly blocked and resumed at a normal rate upon addition of putrescine to the medium. DFMO-treated cells showed an impaired steroidogenic response to ACTH while adenylate cyclase stimulation was not altered. Thus, while ornithine decarboxylase and polyamines may be required for adrenocortical cell replication, deprivation of these compounds did not facilitate the expression of differentiated cell functions, as observed with granulosa cells.  相似文献   
4.
Arctic and boreal ecosystems play an important role in the global carbon (C) budget, and whether they act as a future net C sink or source depends on climate and environmental change. Here, we used complementary in situ measurements, model simulations, and satellite observations to investigate the net carbon dioxide (CO2) seasonal cycle and its climatic and environmental controls across Alaska and northwestern Canada during the anomalously warm winter to spring conditions of 2015 and 2016 (relative to 2010–2014). In the warm spring, we found that photosynthesis was enhanced more than respiration, leading to greater CO2 uptake. However, photosynthetic enhancement from spring warming was partially offset by greater ecosystem respiration during the preceding anomalously warm winter, resulting in nearly neutral effects on the annual net CO2 balance. Eddy covariance CO2 flux measurements showed that air temperature has a primary influence on net CO2 exchange in winter and spring, while soil moisture has a primary control on net CO2 exchange in the fall. The net CO2 exchange was generally more moisture limited in the boreal region than in the Arctic tundra. Our analysis indicates complex seasonal interactions of underlying C cycle processes in response to changing climate and hydrology that may not manifest in changes in net annual CO2 exchange. Therefore, a better understanding of the seasonal response of C cycle processes may provide important insights for predicting future carbon–climate feedbacks and their consequences on atmospheric CO2 dynamics in the northern high latitudes.  相似文献   
5.
The Information and Communication Technology sector is considered to be a major consumer of energy and has become an active participant in Green House Gas emissions. Lots of efforts have been devoted to make network infrastructure and network protocols power-aware and green. Among these efforts, Adaptive Link Rate (ALR) is one of the most widely discussed approaches. This survey highlights the most recent ALR approaches with a brief taxonomy and the state of the art.  相似文献   
6.

Background

To ensure sustainable aquaculture, fish derived raw materials are replaced by vegetable ingredients. Fatty acid composition and contaminant status of farmed Atlantic salmon (Salmo salar L.) are affected by the use of plant ingredients and a spillover effect on consumers is thus expected. Here we aimed to compare the effects of intake of Atlantic salmon fed fish oil (FO) with intake of Atlantic salmon fed a high proportion of vegetable oils (VOs) on development of insulin resistance and obesity in mice.

Methodology/principal findings

Atlantic salmon were fed diets where FO was partly (80%) replaced with three different VOs; rapeseed oil (RO), olive oil (OO) or soy bean oil (SO). Fillets from Atlantic salmon were subsequently used to prepare Western diets (WD) for a mouse feeding trial. Partial replacement of FO with VOs reduced the levels of polychlorinated biphenyls (PCB) and dichloro-diphenyl-tricloroethanes (DDT) with more than 50% in salmon fillets, in WDs containing the fillets, and in white adipose tissue from mice consuming the WDs. Replacement with VOs, SO in particular, lowered the n−3 polyunsaturated fatty acid (PUFA) content and increased n−6 PUFA levels in the salmon fillets, in the prepared WDs, and in red blood cells collected from mice consuming the WDs. Replacing FO with VO did not influence obesity development in the mice, but replacement of FO with RO improved glucose tolerance. Compared with WD-FO fed mice, feeding mice WD-SO containing lower PCB and DDT levels but high levels of linoleic acid (LA), exaggerated insulin resistance and increased accumulation of fat in the liver.

Conclusion/Significance

Replacement of FO with VOs in aqua feed for farmed salmon had markedly different spillover effects on metabolism in mice. Our results suggest that the content of LA in VOs may be a matter of concern that warrants further investigation.  相似文献   
7.
8.
9.
Sodium alendronate is the first in a pharmacological class known as bisphosphonates, used for treatment of various bone diseases. Assay of bisphosphonates by a spectroscopic technique is very challenging due to the fact that they lack chromophores and none of them are fluorescent. In this work, a simple method is presented for determination of alendronate in bulk and in pharmaceutical tablets using spectrofluorometry by exploiting the ability of alendronate to displace salicylate from the iron(III)–salicylate chelate, forming a non‐fluorescent colorless iron(III)–alendronate complex. The liberated salicylate is fluorescent and is equivalent to the mount of alendronate added. The response was linear over the concentration range 20–90 μM and the proposed method was validated according to the guidelines of the International Conference on Harmonization. The correlation coefficient was found to be 0.995 and the limit of detection was 7.5 μM. The method was successfully applied for determination of alendronate in the commercially available Osteonate® tablets. The average percent recovery ± percent relative standard deviation was found to be 102.118 ± 2.033 which is congruent with the label claim of the dosage form. The results were also compared to a reported method using t‐test and F‐test at 95% confidence level; no significant differences were observed. The presented method is simple, fast, easy, cost‐effective and suitable for routine pharmaceutical analysis.  相似文献   
10.
Activation of retrotransposon is a pivotal factor in the genesis of genetic polymorphism. Retrotransposon-based molecular markers are excellent tools for detecting genetic diversity and genomic changes associated with their activity. The objective of this study was to use IRAP markers to detect integration events of retrotransposon in Opuntia, and to compare IRAP and ISSR polymorphisms. To achieve these aims, five IRAP and five ISSR markers were analyzed on three varieties and their progenies. All IRAP primers showed an increase in the percentage of polymorphism, number of total bands, and polymorphic bands in the seedlings compared to their mother plants; that is, the offspring showed 13, 24 and 27 more bands than the mother plants from Tobarito, Montesa and Copena varieties, respectively. Conversely, sexual reproduction did not proportionally affect the variation in the number of ISSR bands, and neither did polymorphisms between mother plants and their offspring. Cluster and multivariate analyses based on IRAP and ISSR data revealed a clear separation between varieties, and there was no overlapping between seedlings of different varieties. The activation of retrotransposons in seedlings of opuntia with variable frequencies was evidenced. The presence of insertion and active retrotransposons may help to undertake studies on genetic diversity and evolution of Opuntia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号