全文获取类型
收费全文 | 223篇 |
免费 | 21篇 |
国内免费 | 1篇 |
专业分类
245篇 |
出版年
2023年 | 1篇 |
2022年 | 5篇 |
2021年 | 8篇 |
2020年 | 1篇 |
2019年 | 3篇 |
2018年 | 8篇 |
2017年 | 3篇 |
2016年 | 4篇 |
2015年 | 8篇 |
2014年 | 8篇 |
2013年 | 10篇 |
2012年 | 13篇 |
2011年 | 11篇 |
2010年 | 10篇 |
2009年 | 12篇 |
2008年 | 7篇 |
2007年 | 10篇 |
2006年 | 6篇 |
2005年 | 2篇 |
2004年 | 5篇 |
2003年 | 6篇 |
2002年 | 4篇 |
2001年 | 3篇 |
2000年 | 1篇 |
1999年 | 7篇 |
1998年 | 7篇 |
1997年 | 6篇 |
1996年 | 5篇 |
1995年 | 3篇 |
1994年 | 4篇 |
1993年 | 6篇 |
1992年 | 10篇 |
1991年 | 6篇 |
1990年 | 3篇 |
1989年 | 4篇 |
1988年 | 7篇 |
1987年 | 5篇 |
1986年 | 3篇 |
1985年 | 1篇 |
1983年 | 4篇 |
1982年 | 6篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1975年 | 1篇 |
1974年 | 1篇 |
1973年 | 1篇 |
1971年 | 1篇 |
排序方式: 共有245条查询结果,搜索用时 15 毫秒
1.
2.
Antonella Marino Gammazza Manfredi Rizzo Roberto Citarrella Francesca Rappa Claudia Campanella Fabio Bucchieri Angelo Patti Dragana Nikolic Daniela Cabibi Giandomenico Amico Pier Giulio Conaldi Pier Luigi San Biagio Giuseppe Montalto Felicia Farina Giovanni Zummo Everly Conway de Macario Alberto J. L. Macario Francesco Cappello 《Cell stress & chaperones》2014,19(3):343-353
The role Hsp60 might play in various inflammatory and autoimmune diseases is under investigation, but little information exists pertaining to Hashimoto’s thyroiditis (HT). With the aim to fill this gap, in the present work, we directed our attention to Hsp60 participation in HT pathogenesis. We found Hsp60 levels increased in the blood of HT patients compared to controls. The chaperonin was immunolocalized in thyroid tissue specimens from patients with HT, both in thyrocytes and oncocytes (Hurthle cells) with higher levels compared to controls (goiter). In oncocytes, we found Hsp60 not only in the cytoplasm but also on the plasma membrane, as shown by double immunofluorescence performed on fine needle aspiration cytology. By bioinformatics, we found regions in the Hsp60 molecule with remarkable structural similarity with the thyroglobulin (TG) and thyroid peroxidase (TPO) molecules, which supports the notion that autoantibodies against TG and TPO are likely to recognize Hsp60 on the plasma membrane of oncocytes. This was also supported by data obtained by ELISA, showing that anti-TG and anti-TPO antibodies cross-react with human recombinant Hsp60. Antibody-antigen (Hsp60) reaction on the cell surface could very well mediate thyroid cell damage and destruction, perpetuating inflammation. Experiments with recombinant Hsp60 did not show stimulation of cytokine production by peripheral blood mononuclear cells from HT patients. All together, these results led us to hypothesize that Hsp60 may be an active player in HT pathogenesis via an antibody-mediated immune mechanism. 相似文献
3.
4.
5.
A novel multicellular form of Methanosarcina mazei S-6 is described. It was termed lamina, and it formed during the exponential growth phase when packets or single cells were grown in 40 mM trimethylamine and a total concentration of 8.3 to 15.6 mM Ca2+ and/or Mg2+, in cultures that were not shaken. A distinct molecular event represented by the increment in expression and a spatial redistribution of an antigen during lamina formation is documented. 相似文献
6.
7.
8.
A major finding within the field of archaea and molecular chaperones has been the demonstration that, while some species have the stress (heat-shock) gene hsp70(dnaK), others do not. This gene encodes Hsp70(DnaK), an essential molecular chaperone in bacteria and eukaryotes. Due to the physiological importance and the high degree of conservation of this protein, its absence in archaeal organisms has raised intriguing questions pertaining to the evolution of the chaperone machine as a whole and that of its components in particular, namely, Hsp70(DnaK), Hsp40(DnaJ), and GrpE. Another archaeal paradox is that the proteins coded by these genes are very similar to bacterial homologs, as if the genes had been received via lateral transfer from bacteria, whereas the upstream flanking regions have no bacterial markers, but instead have typical archaeal promoters, which are like those of eukaryotes. Furthermore, the chaperonin system in all archaea studied to the present, including those that possess a bacterial-like chaperone machine, is similar to that of the eukaryotic-cell cytosol. Thus, two chaperoning systems that are designed to interact with a compatible partner, e.g., the bacterial chaperone machine physiologically interacts with the bacterial but not with the eucaryal chaperonins, coexist in archaeal cells in spite of their apparent functional incompatibility. It is difficult to understand how these hybrid characteristics of the archaeal chaperoning system became established and work, if one bears in mind the classical ideas learned from studying bacteria and eukaryotes. No doubt, archaea are intriguing organisms that offer an opportunity to find novel molecules and mechanisms that will, most likely, enhance our understanding of the stress response and the protein folding and refolding processes in the three phylogenetic domains. 相似文献
9.
Monoclonal antibodies were prepared against two species of Methanomicrobiaceae. Antibody 1A is specific for Methanospirillum hungatei strain JF1 and the determinant it recognizes is expressed on the surface of JF1 cells, where it is exposed and accessible to antibody. The determinant is found in a polypeptide (MW<12,000) in the sheath that covers the bacterial cell; it is not present in Methanospirillum hungatei strain GP1; and it is not expressed on the surface of whole cells of the other 24 methanogenic bacteria tested. It is therefore a marker of strain JF1, consequently, antibody 1A is potentially useful for tracking JF1 and fragments thereof in a variety of samples. Antibody 7A is specific for Methanogenium cariaci JR1c. It did not react with any other methanogen tested, not even with Mg. marisnigri or Ms. hungatei JF1, although these cross-react with Mg. cariaci if tested with polyclonal antisera. Therefore antibody 7A recognizes specifically a marker of Mg. cariaci JR1c.Abbreviations SIA
slide immunoenzymatic assay
- SDS-PAGE
sodium dodecylsulfate polyacrylamide gel electrophoresis 相似文献
10.
M Imboden A Nieters AJ Bircher M Brutsche N Becker M Wjst U Ackermann-Liebrich W Berger NM Probst-Hensch 《Clinical and molecular allergy : CMA》2006,4(1):1-9