首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   17篇
  2021年   2篇
  2019年   1篇
  2017年   5篇
  2016年   4篇
  2015年   2篇
  2014年   2篇
  2013年   6篇
  2012年   7篇
  2011年   6篇
  2010年   4篇
  2009年   1篇
  2008年   6篇
  2007年   8篇
  2006年   3篇
  2005年   6篇
  2004年   4篇
  2003年   6篇
  2002年   5篇
  2001年   3篇
  2000年   5篇
  1999年   5篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1995年   4篇
  1994年   2篇
  1992年   1篇
  1991年   3篇
  1989年   4篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1982年   5篇
  1981年   2篇
  1979年   2篇
  1976年   2篇
  1973年   1篇
  1971年   1篇
  1965年   1篇
排序方式: 共有139条查询结果,搜索用时 15 毫秒
1.
Booknotes     
MR 《Biology & philosophy》1987,2(1):117-122
  相似文献   
2.
Site-specific recombination promotes plasmid amplification in yeast   总被引:32,自引:0,他引:32  
F C Volkert  J R Broach 《Cell》1986,46(4):541-550
All stable, naturally occurring circular yeast DNA plasmids contain a pair of long, nontandem inverted repeats that undergo frequent reciprocal recombination. This yields two plasmid inversion isomers that exist in the cell in equal numbers. In the 2 mu circle plasmid of S. cerevisiae such inversion is catalyzed by a plasmid-encoded site-specific recombinase, FLP. We show that the site-specific recombination system of 2 mu circle enables the plasmid to increase its mean intracellular copy number in yeast cells growing under nonselective conditions. This apparently occurs by a FLP-induced transient shift in the mode of replication from theta to double rolling circle as initially proposed by Futcher. This capability may ensure stable maintenance of the plasmid by enabling it to correct downward deviations in copy number that result from imprecision of the plasmid-encoded partitioning system.  相似文献   
3.
4.
Damage to proximal tubules due to exposure to toxicants can lead to conditions such as acute kidney injury (AKI), chronic kidney disease (CKD) and ultimately end-stage renal failure (ESRF). Studies have shown that kidney proximal epithelial cells can regenerate particularly after acute injury. In the previous study, we utilized an immortalized in vitro model of human renal proximal tubule epithelial cells, RPTEC/TERT1, to isolate HRTPT cell line that co-expresses stem cell markers CD133 and CD24, and HREC24T cell line that expresses only CD24. HRTPT cells showed most of the key characteristics of stem/progenitor cells; however, HREC24T cells did not show any of these characteristics. The goal of this study was to further characterize and understand the global gene expression differences, upregulated pathways and gene interaction using scRNA-seq in HRTPT cells. Affymetrix microarray analysis identified common gene sets and pathways specific to HRTPT and HREC24T cells analysed using DAVID, Reactome and Ingenuity software. Gene sets of HRTPT cells, in comparison with publicly available data set for CD133+ infant kidney, urine-derived renal progenitor cells and human kidney-derived epithelial proximal tubule cells showed substantial similarity in organization and interactions of the apical membrane. Single-cell analysis of HRTPT cells identified unique gene clusters associated with CD133 and the 92 common gene sets from three data sets. In conclusion, the gene expression analysis identified a unique gene set for HRTPT cells and narrowed the co-expressed gene set compared with other human renal–derived cell lines expressing CD133, which may provide deeper understanding in their role as progenitor/stem cells that participate in renal repair.  相似文献   
5.

Introduction

Exercise training has emerged as a promising therapeutic strategy to counteract physical dysfunction in adult systemic lupus erythematosus. However, no longitudinal studies have evaluated the effects of an exercise training program in childhood-onset systemic lupus erythematosus (C-SLE) patients. The objective was to evaluate the safety and the efficacy of a supervised aerobic training program in improving the cardiorespiratory capacity in C-SLE patients.

Methods

Nineteen physically inactive C-SLE patients were randomly assigned into two groups: trained (TR, n = 10, supervised moderate-intensity aerobic exercise program) and non-trained (NT, n = 9). Gender-, body mass index (BMI)- and age-matched healthy children were recruited as controls (C, n = 10) for baseline (PRE) measurements only. C-SLE patients were assessed at PRE and after 12 weeks of training (POST). Main measurements included exercise tolerance and cardiorespiratory measurements in response to a maximal exercise (that is, peak VO2, chronotropic reserve (CR), and the heart rate recovery (ΔHRR) (that is, the difference between HR at peak exercise and at both the first (ΔHRR1) and second (ΔHRR2) minutes of recovery after exercise).

Results

The C-SLE NT patients did not present changes in any of the cardiorespiratory parameters at POST (P > 0.05). In contrast, the exercise training program was effective in promoting significant increases in time-to-exhaustion (P = 0.01; ES = 1.07), peak speed (P = 0.01; ES = 1.08), peak VO2 (P = 0.04; ES = 0.86), CR (P = 0.06; ES = 0.83), and in ΔHRR1 and ΔHRR2 (P = 0.003; ES = 1.29 and P = 0.0008; ES = 1.36, respectively) in the C-SLE TR when compared with the NT group. Moreover, cardiorespiratory parameters were comparable between C-SLE TR patients and C subjects after the exercise training intervention, as evidenced by the ANOVA analysis (P > 0.05, TR vs. C). SLEDAI-2K scores remained stable throughout the study.

Conclusion

A 3-month aerobic exercise training was safe and capable of ameliorating the cardiorespiratory capacity and the autonomic function in C-SLE patients.

Trial registration

NCT01515163.  相似文献   
6.

Background and Purpose

In acute ischemic stroke (AIS) management, CT-based thrombus density has been associated with treatment success. However, currently used thrombus measurements are prone to inter-observer variability and oversimplify the heterogeneous thrombus composition. Our aim was first to introduce an automated method to assess the entire thrombus density and then to compare the measured entire thrombus density with respect to current standard manual measurements.

Materials and Method

In 135 AIS patients, the density distribution of the entire thrombus was determined. Density distributions were described using medians, interquartile ranges (IQR), kurtosis, and skewedness. Differences between the median of entire thrombus measurements and commonly applied manual measurements using 3 regions of interest were determined using linear regression.

Results

Density distributions varied considerably with medians ranging from 20.0 to 62.8 HU and IQRs ranging from 9.3 to 55.8 HU. The average median of the thrombus density distributions (43.5 ± 10.2 HU) was lower than the manual assessment (49.6 ± 8.0 HU) (p<0.05). The difference between manual measurements and median density of entire thrombus decreased with increasing density (r = 0.64; p<0.05), revealing relatively higher manual measurements for low density thrombi such that manual density measurement tend overestimates the real thrombus density.

Conclusions

Automatic measurements of the full thrombus expose a wide variety of thrombi density distribution, which is not grasped with currently used manual measurement. Furthermore, discrimination of low and high density thrombi is improved with the automated method.  相似文献   
7.
Volkert LG 《Bio Systems》2003,69(2-3):127-142
The evolutionary adaptability of a system is dependent on three organizational properties, self-organizing dynamics that are hierarchically organized, component redundancy, and multiple weak interactions [Towards high evolvability dynamics, in: G. van de Vijver, S. Salthe, M. Delpos (Eds.), Evolutionary Systems, Kluwer Academic Publishers, Dordrecht, 1998, pp. 147-169]. This study reports on the use of the dual dynamics network model as an aid in understanding the role multiple weak interactions play in enhancing evolutionary adaptability. Dual dynamics networks are self-organizing systems that consist of simple components that change local state due to the coupled influences from connected components exerting strong discrete decision-making influences and from groups of components exerting multiple weak influences [J. Theor. Biol. 193 (1998) 287]. The dual dynamics model has been enhanced to support investigations of properties relevant to a system's capacity for evolvability, such as structure-function relationships, neutrality, adaptive tolerance, and evolutionary search performance.Three network types are investigated, each utilizing a different method of coupling strong and weak influences. The results demonstrate that the manner of coupling multiple weak interactions into the systems dynamics significantly affects the structure-function maps and the consequent evolvability characteristics. Specifically it is found that a form of coupling, denoted as linear modulation, enhances evolutionary adaptability. Linear modulation coupling requires that the weak interactions be integrated with strong interactions in a manner that implies a linear ordered relation between the possible state values of the components of the systems. When coupling functions that do not imply such an ordering of local state values are used, evolutionary adaptability is decreased.  相似文献   
8.
9.
The current status of kinetoplastids phylogeny and evolution is discussed in view of the recent progresses on genomics. Some ideas on a potential framework for the evolutionary genomics of kinetoplastids are presented.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号