首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   212篇
  免费   60篇
  272篇
  2023年   2篇
  2020年   3篇
  2019年   7篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   9篇
  2014年   7篇
  2013年   9篇
  2012年   13篇
  2011年   12篇
  2010年   8篇
  2009年   2篇
  2008年   10篇
  2007年   11篇
  2006年   5篇
  2005年   6篇
  2004年   11篇
  2003年   9篇
  2002年   14篇
  2001年   14篇
  2000年   9篇
  1999年   7篇
  1998年   7篇
  1997年   7篇
  1996年   8篇
  1995年   6篇
  1994年   6篇
  1993年   11篇
  1992年   9篇
  1991年   2篇
  1988年   7篇
  1987年   3篇
  1986年   2篇
  1984年   3篇
  1981年   2篇
  1980年   3篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1966年   1篇
  1965年   1篇
  1960年   2篇
  1956年   1篇
  1927年   1篇
排序方式: 共有272条查询结果,搜索用时 0 毫秒
1.
At least 20 major proteins make up the ribonucleoprotein (RNP) complexes of heterogeneous nuclear RNA (hnRNA) in mammalian cells. Many of these proteins have distinct RNA-binding specificities. The abundant, acidic heterogeneous nuclear RNP (hnRNP) K and J proteins (66 and 64 kDa, respectively, by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) are unique among the hnRNP proteins in their binding preference: they bind tenaciously to poly(C), and they are the major oligo(C)- and poly(C)-binding proteins in human HeLa cells. We purified K and J from HeLa cells by affinity chromatography and produced monoclonal antibodies to them. K and J are immunologically related and conserved among various vertebrates. Immunofluorescence microscopy with antibodies shows that K and J are located in the nucleoplasm. cDNA clones for K were isolated, and their sequences were determined. The predicted amino acid sequence of K does not contain an RNP consensus sequence found in many characterized hnRNP proteins and shows no extensive homology to sequences of any known proteins. The K protein contains two internal repeats not found in other known proteins, as well as GlyArgGlyGly and GlyArgGlyGlyPhe sequences, which occur frequently in many RNA-binding proteins. Overall, K represents a novel type of hnRNA-binding protein. It is likely that K and J play a role in the nuclear metabolism of hnRNAs, particularly for pre-mRNAs that contain cytidine-rich sequences.  相似文献   
2.
We identified and produced antibodies to the major proteins that interact with poly(A)+ RNAs in the yeast Saccharomyces cerevisiae. The major proteins which were cross-linked by UV light to poly(A)+ RNA in intact yeast cells had apparent molecular weights of 72,000, 60,000, and 50,000. The poly(A) segment of the RNA was selectively cross-linked to the 72,000-molecular-weight protein (72K protein). Mice immunized with purified UV-cross-linked RNA-protein (RNP) complexes produced antibodies to the three major RNP proteins. A yeast genomic DNA library constructed in the lambda gt11 expression vector was screened with the anti-RNP serum, and recombinant bacteriophage clones were isolated. One recombinant phage, lambda YPA72.1, bearing a 2.5-kilobase insert, produced a large beta-galactosidase-RNP fusion protein. Affinity-selected antibodies from the anti-RNP serum on this fusion protein recognized a single 72K protein which was cross-linked to the poly(A) segment of RNA in the intact cell. Furthermore, the fusion protein of lambda YPA72.1 had specific poly(A)-binding activity. Therefore, lambda YPA72.1 encodes the 72K poly(A)-binding protein. Immunofluorescence microscopy showed that this protein was localized in the cytoplasm. Hybrid-selected mRNA translated in vitro produced the 72K poly(A)-binding protein, and mRNA blot analysis detected a single 2.1-kilobase mRNA. DNA blot analysis suggested a single gene for the poly(A)-binding protein. DNA sequence analysis of genomic clones spanning the entire gene revealed a long open reading frame encoding a 64,272-molecular-weight protein with several distinct domains and repeating structural elements. A sequence of 11 to 13 amino acids is repeated three times in this protein. Strikingly, this repeated sequence (RNP consensus sequence) is highly homologous to a sequence that is repeated twice in a major mammalian heterogeneous nuclear RNP protein, A1. The conservation of the repetitive RNP consensus sequence suggests an important function and a common evolutionary origin for messenger RNP and heterogeneous nuclear RNP proteins.  相似文献   
3.
The light-induced assembly of light-harvesting complex (LHC) II has been followed during the biogenesis of the plastid. Seedlings grown in intermittent light (IML) accumulate only small amounts of chlorophyll b. The minor LHC II apoproteins are present; however, the apoprotein levels of the major LHC II complex, LHC IIb, are severely depressed after exposure to IML. The levels of all LHC II apoproteins increase rapidly upon exposure to continuous illumination. The 25-kD, type 3 LHC IIb subunit appears to be more abundant during the early hours of greening in relation to its level in mature thylakoids. The LHC IIb apoproteins are initially associated with pigments to form monomeric pigment-protein complexes. The abundance of monomeric LHC IIb complexes gradually decreases during exposure to continuous light and a concomitant increase occurs in the amount of the trimeric and higher-order oligomeric forms. Pulse-chase experiments verify that labeled LHC IIb monomeric complexes are intermediates in the formation of trimeric and higher-order oligomeric LHC IIb-pigmented complexes. Therefore, the assembly of LHC II occurs via the initial pigmentation of the apoproteins to form monomeric complexes and proceeds in a sequential manner.  相似文献   
4.
Heterogeneous nuclear ribonucleoprotein (hnRNP) complexes, the structures that contain heterogeneous nuclear RNA and its associated proteins, constitute one of the most abundant components of the eukaryotic nucleus. hnRNPs appear to play important roles in the processing, and possibly also in the transport, of mRNA. hnRNP C proteins (C1, M(r) of 41,000; C2, M(r) of 43,000 [by sodium dodecyl sulfate-polyacrylamide gel electrophoresis]) are among the most abundant pre-mRNA-binding proteins, and they bind tenaciously to sequences relevant to pre-mRNA processing, including the polypyrimidine stretch of introns (when it is uridine rich). C proteins are found in the nucleus during the interphase, but during mitosis they disperse throughout the cell. They have been shown previously to be phosphorylated in vivo, and they can be phosphorylated in vitro by a casein kinase type II. We have identified and partially purified at least two additional C protein kinases. One of these, termed Cs kinase, caused a distinct mobility shift of C proteins on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These phosphorylated C proteins, the Cs proteins, were the prevalent forms of C proteins during mitosis, and Cs kinase activity was also increased in extracts prepared from mitotic cells. Thus, hnRNP C proteins undergo cell cycle-dependent phosphorylation by a cell cycle-regulated protein kinase. Cs kinase activity appears to be distinct from the well-characterized mitosis-specific histone H1 kinase activity. Several additional hnRNP proteins are also phosphorylated during mitosis and are thus also potential substrates for Cs kinase. These novel phosphorylations may be important in regulating the assembly and disassembly of hnRNP complexes and in the function or cellular localization of RNA-binding proteins.  相似文献   
5.
6.
7.
Fragile X Mental Retardation Syndrome is the most common form of hereditary mental retardation, and is caused by defects in the FMR1 gene. FMR1 is an RNA-binding protein and the syndrome results from lack of expression of FMR1 or expression of a mutant protein that is impaired in RNA binding. The specific function of FMR1 is not known. As a step towards understanding the function of FMR1 we searched for proteins that interact with it in vivo. We have cloned and sequenced a protein that interacts tightly with FMR1 in vivo and in vitro. This novel protein, FXR2, is very similar to FMR1 (60% identity). FXR2 encodes a 74 kDa protein which, like FMR1, contains two KH domains, has the capacity to bind RNA and is localized to the cytoplasm. The FXR2 gene is located on human chromosome 17 at 17p13.1. In addition, FMR1 and FXR2 interact tightly with the recently described autosomal homolog FXR1. Each of these three proteins is capable of forming heteromers with the others, and each can also form homomers. FXR1 and FXR2 are thus likely to play important roles in the function of FMR1 and in the pathogenesis of the Fragile X Mental Retardation Syndrome.  相似文献   
8.
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are thought to influence the structure of hnRNA and participate in the processing of hnRNA to mRNA. The hnRNP U protein is an abundant nucleoplasmic phosphoprotein that is the largest of the major hnRNP proteins (120 kDa by SDS-PAGE). HnRNP U binds pre-mRNA in vivo and binds both RNA and ssDNA in vitro. Here we describe the cloning and sequencing of a cDNA encoding the hnRNP U protein, the determination of its amino acid sequence and the delineation of a region in this protein that confers RNA binding. The predicted amino acid sequence of hnRNP U contains 806 amino acids (88,939 Daltons), and shows no extensive homology to any known proteins. The N-terminus is rich in acidic residues and the C-terminus is glycine-rich. In addition, a glutamine-rich stretch, a putative NTP binding site and a putative nuclear localization signal are present. It could not be defined from the sequence what segment of the protein confers its RNA binding activity. We identified an RNA binding activity within the C-terminal glycine-rich 112 amino acids. This region, designated U protein glycine-rich RNA binding region (U-gly), can by itself bind RNA. Furthermore, fusion of U-gly to a heterologous bacterial protein (maltose binding protein) converts this fusion protein into an RNA binding protein. A 26 amino acid peptide within U-gly is necessary for the RNA binding activity of the U protein. Interestingly, this peptide contains a cluster of RGG repeats with characteristic spacing and this motif is found also in several other RNA binding proteins. We have termed this region the RGG box and propose that it is an RNA binding motif and a predictor of RNA binding activity.  相似文献   
9.
10.
Transport of proteins and RNAs in and out of the nucleus   总被引:62,自引:0,他引:62  
Nakielny S  Dreyfuss G 《Cell》1999,99(7):677-690
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号