首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   6篇
  国内免费   1篇
  2023年   1篇
  2021年   2篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   5篇
  2014年   1篇
  2013年   6篇
  2012年   5篇
  2011年   7篇
  2010年   6篇
  2009年   7篇
  2008年   10篇
  2007年   5篇
  2006年   4篇
  2005年   4篇
  2004年   5篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1977年   3篇
  1976年   3篇
  1968年   1篇
排序方式: 共有121条查询结果,搜索用时 46 毫秒
1.
We have measured the extent of flash-induced electron transfer from the bacteriochlorophyll dimer, P, to the bacteriopheophytin in the M-subunit, HM, in reaction centers of Rhodopseudomonas viridis. This has been done by measuring the transient states produced by excitation of reaction centers trapped in the PHL HM state at 90 K. Under these conditions the normal forward electron transfer to the bacteriopheophytin in the L-subunit, HL, is blocked and the yield of transient P+HM can be estimated with respect to the lifetime of P*. Under these conditions flash induced absorbance decreases of the bacteriochlorophyll dimer 990 nm band suggest that a transient P+ state is formed with a quantum yield of 0.09±0.06 compared to that formed during normal photochemistry. These transient measurements provide an upper limited on the yield of a transient P+ HM state. An estimate of 0.09 as the yield of the P+ HM state is consistent with all current observations. This estimate and the lifetime of P* suggest that the electron transfer rate from P* to HM, kM, is about 5 × 109 sec–1 (M = 200ps). These measurements suggest that the a branching ratio kL/kM is on the order of 200. The large value of the branching ratio is remarkable in view of the structural symmetry of the reaction center. This measurement should be useful for electron transfer calculations based upon the reaction center structure.  相似文献   
2.
WhileEscherichia coli is common as a commensal organism in the distal ileum and colon, the presence of colonization factors (CF) on pathogenic strains ofE. coli facilitates attachment of the organism to intestinal receptor molecules in a species- and tissue-specific fashion. After the initial adherence, colonization occurs, and the involvement of additional virulence determinants leads to illness. EnterotoxigenicE. coli (ETEC) is the most extensively studied of the five categories ofE. coli that cause diarrheal disease, and has the greatest impact on health worldwide. ETEC can be isolated from domestic animals and humans. The biochemistry, genetics, epidemiology, antigenic characteristics, and cell and receptor binding properties of ETEC have been extensively described. Another major category, enteropathogenicE. coli (EPEC), has virulence mechanisms, primarily effacement and cytoskeletal rearrangement of intestinal brush borders, that are distinct from ETEC. An EPEC CF receptor has been purified and characterized as a sialidated transmembrane glycoprotein complex directly attached to actin, thereby associating CF-binding with host-cell response. Three, additional categories ofE. coli diarrheal disease, their colonization factors and their host cell receptors are discussed. It appears that biofilms exist in the intestine in a manner similar to oral bacterial biofilms, and thatE. coli is part of these biofilms as both commensals and pathogens.Abbreviations CF colonization factor - CFA Colonization Factor Antigen - CS coli-surface-associated antigen - EAggEC enteroaggregativeE. coli - ECDD E. coli diarrheal disease - EHEC enterohemorrhagicE. coli - EIEC enteroinvasiveE. coli - EPEC enteropathogenicE. coli - ETEC enterotoxigenicE. coli - Gal galactose - GalNAc N-acetyl galactosamine - LT heat-labile toxin - NeuAc N-acetyl neuraminic acid - PCF Putative colonization factor - RBC red blood cells - SLT Shiga-like toxin - ST heat-stable toxin  相似文献   
3.
The photo-oxidation of the reaction center bacteriochlorophyll dimer or special pair was monitored at 1235 nm in Chromatium vinosum and at 1301 nm in Rhodopseudomonas viridis. In both species, the photo-oxidation was apparently complete within 10 ps after light excitation and proceeded unimpeded at low temperatures regardless of the prior state of reduction of the traditional primary electron acceptor, a quinone-iron complex. Thus the requirement for an intermediary electron carrier (I), previously established by picosecond measurements in Rps. sphaeroides (see ref. 4), is clearly a more general phenomenon.

The intermediary carrier, which involves bacteriopheophytin, was examined from the standpoint of its role as the direct electron acceptor from the photo-excited reaction center bacteriochlorophyll dimer. To accomplish this, the extent of light induced bacteriochlorophyll dimer oxidation was measured directly by the picosecond response of the infrared bands and indirectly by EPR assay of the triplet/biradical, as a function of the state of reduction of the I/I couple (measured by EPR) prior to activation. Two independent methods of obtaining I in a stably reduced form were used: chemical equilibrium reduction, and photochemical reduction. In both cases, the results demonstrated that the intermediary carrier, which we designate I, alone governs the capability for reaction center bacteriochlorophyll photooxidation, and as such I appears to be the immediate and sole electron acceptor from the light excited reaction center bacteriochlorophyll dimer.  相似文献   

4.
The spectroscopic properties of the intermediary electron carrier (I), which functions between the bacteriochlorophyll dimer, (BChl)2, and the primary acceptor quinone · iron, QFe, have been characterized in Rhodopseudomonas viridis. Optically the reduction of I is accompanied by a bleaching of bands at 545 and 790 nm and a broad absorbance increase around 680 nm which we attribute to the reduction of a bacteriopheophytin, together with apparent blue shifts of the bacteriochlorophyll bands at 830 and possibly at 960 nm. Low temperature electron paramagnetic resonance analysis also reveals complicated changes accompanying the reduction of I. In chromatophores I? is revealed as a broad split signal centered close to g 2.003, which is consistent with I? interacting, via exchange coupling and dipolar effects, with the primary acceptor Q?Fe. This is supported by experiments with reaction centers prepared with sodium dodecyl sulfate, which lack the Q?Fe g 1.82 signal, and also lack the broad split I? signal; instead, I? is revealed as an approximately 13 gauss wide free radical centered close to g 2.003. Reaction centers prepared using lauryl dimethylamine N-oxide retain most of their Q?Fe g 1.82 signal, and in this case I? occurs as a mixture of the two EPR signals described above. However, the optical changes accompanying the reduction of I? are very similar in the two reaction center preparations, so we conclude that there is no direct correlation between the two optical and the two EPR signals of I?. Perhaps the simplest explanation of the results is that the two EPR signals reflect the reduced bacteriopheophytin either interacting, or not interacting, with Q?Fe, while the optical changes reflect the reduction of bacteriophenophytin, together with secondary, perhaps electrochromic effects on the bacteriochlorophylls of the reaction center. However, we are unable to eliminate completely the possibility that there is also some electron sharing between the reduced bacteriopheophytin and bacteriochlorophyll.  相似文献   
5.
Incubation of [14C]-ring labeled hexamethylmelamine and pentamethylmelamine with rat and mouse liver microsomal preparations results in metabolic activation of both drugs as measured by covalent binding of radiolabel to acid-precipitable microsomal macromolecules. Covalent binding is dependent on viable microsomes, NADPH, and molecular oxygen. Binding of HMM (280 pmol/mg protein/15 min) was approximately 5 times greater than that observed for PMM (60 pmol/mg protein/15 min), and represents 0.22% of incubated material. Similar results were found with [14C]-methyl labeled substrates. Pretreatment with phenobarbital increased covalent binding while addition of SKF 525-A, addition of glutathione, or incubation in an 80% carbon monoxide atmosphere reduced covalent binding.  相似文献   
6.
1. A reaction center-cytochrome c complex has been isolated from Chromatium vinosum which is capable of normal photochemistry and light-activated rapid cytochrome c553 and c555 oxidation, but which has no antenna bacteriochlorophyll. As is found in whole cells, ferrocytochrome c553 is oxidized irreversibly in milliseconds by light at 7 K. 2. Room temperature redox potentiometry in combination with EPR analysis at 7 K, of cytochrome c553 and the reaction center bacteriochlorophyll dimer (BChl)2 absorbing at 883 nm yields identical results to those previously reported using optical analytical techniques at 77 K. It shows directly that two cytochrome c553 hemes are equivalent with respect to the light induced (BChl)2+. At 7 K, only one heme can be rapidly oxidized in the light, commensurate with the electron capacity of the primary acceptor (quinone-iron) being unity. 3. Prior chemical reduction of the quinone-iron followed by illumination at 200K, however, leads to the slow (t1/2 approximately equal to 30 s) oxidation of one cytochrome c553 heme, with what appears to be concommitant reduction of one of the two bacteriophytins (BPh) of the reaction center as shown by bleaching of the 760 nm band, a broad absorbance increase at approx. 650 nm and a bleaching at 543 nm. The 800 nm absorbing bacteriochlorophyll is also involved since there is also bleaching at 595 and 800 nm; at the latter wave-length the remaining unbleached band appears to shift significantly to the blue. No redox changes in the 883 absorbing bacteriochlorophyll dimer are seen during or after illumination under these conditions. The reduced part of the state represents what is considered to be the reduced form of the electron carrier (I) which acts as an intermediate between the bacteriochlorophyll dimer and quinone-iron. The state (oxidized c553/reduced I) relaxes in the dark at 200K in t1/2 approx. 20 min but below 77 K it is trapped on a days time scale. 4. EPR analysis of the state trapped as described above reveals that one heme equivalent of cytochrome becomes oxidized for the generation of the state, a result in agreement with the optical data. Two prominent signals are associated with the trapped state in the g = 2 region, which can be easily resolved with temperature and microwave power saturation: one has a line width of 15 g and is centered at g = 2.003; the other, which is the major signal, is also a radical centered at g = 2.003 but is split by 60 G and behaves as though it were an organic free-radical spin-coupled with another paramagnetic center absorbing at higher magnetic field values; this high field partner could be the iron-quinone of the primary acceptor. The identity of two signals associated with I-. is consistent with the idea that the reduced intermediary carrier is not simply BPh-. but also involves a second radical, perhaps the 800 nm bacteriochlorophylls in the reduced state...  相似文献   
7.
We examined gazelle peripheral blood leucocytes using the α-Naphthyl acetate esterase (ANAE) staining technique (pH 5.8). Our purpose was to determine the percentage of ANAE positive lymphocytes. The proportion of ANAE positive T-lymphocytes was 72%. T-lymphocytes showed an ANAE positive reaction, but eosinophilic granulocytes and monocytes also showed a positive reaction. By contrast, no reaction was detected in B-lymphocytes, neutrophil granulocytes or platelets. The reaction observed in T-lymphocytes was a red-brown coloration, usually 1–2 granules, but enough granules to fill the cytoplasm were detected rarely. As a result of ANAE enzyme staining, we concluded that the staining technique can be used as a cytochemical marker for gazelle T-lymphocytes.  相似文献   
8.
9.
The use of peptides as in vivo and in vitro ligand binding agents is hampered by the high flexibility, low stability and lack of intrinsic detection signal of peptide aptamers. Recent attempts to overcome these limitations included the integration of the binding peptide into a stable protein scaffold. In this paper, we present the optimization and testing of a circularly permuted variant of the green fluorescent protein (GFP). We examined the ability of the optimized scaffold to accept peptide insertions at three different regions. The three regions chosen are localized in close spatial proximity to each other and support different conformations of the inserted peptides. In all the three regions peptides with a biased, but still comprehensive, amino acid repertoire could be presented without disturbing the function of the optimized GFP-scaffold.  相似文献   
10.
Mutations in the PTEN‐induced kinase 1 (PINK1) are causative of autosomal recessive Parkinson''s disease (PD). We have previously reported that PINK1 is activated by mitochondrial depolarisation and phosphorylates serine 65 (Ser65) of the ubiquitin ligase Parkin and ubiquitin to stimulate Parkin E3 ligase activity. Here, we have employed quantitative phosphoproteomics to search for novel PINK1‐dependent phosphorylation targets in HEK (human embryonic kidney) 293 cells stimulated by mitochondrial depolarisation. This led to the identification of 14,213 phosphosites from 4,499 gene products. Whilst most phosphosites were unaffected, we strikingly observed three members of a sub‐family of Rab GTPases namely Rab8A, 8B and 13 that are all phosphorylated at the highly conserved residue of serine 111 (Ser111) in response to PINK1 activation. Using phospho‐specific antibodies raised against Ser111 of each of the Rabs, we demonstrate that Rab Ser111 phosphorylation occurs specifically in response to PINK1 activation and is abolished in HeLa PINK1 knockout cells and mutant PINK1 PD patient‐derived fibroblasts stimulated by mitochondrial depolarisation. We provide evidence that Rab8A GTPase Ser111 phosphorylation is not directly regulated by PINK1 in vitro and demonstrate in cells the time course of Ser111 phosphorylation of Rab8A, 8B and 13 is markedly delayed compared to phosphorylation of Parkin at Ser65. We further show mechanistically that phosphorylation at Ser111 significantly impairs Rab8A activation by its cognate guanine nucleotide exchange factor (GEF), Rabin8 (by using the Ser111Glu phosphorylation mimic). These findings provide the first evidence that PINK1 is able to regulate the phosphorylation of Rab GTPases and indicate that monitoring phosphorylation of Rab8A/8B/13 at Ser111 may represent novel biomarkers of PINK1 activity in vivo. Our findings also suggest that disruption of Rab GTPase‐mediated signalling may represent a major mechanism in the neurodegenerative cascade of Parkinson''s disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号