首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22194篇
  免费   1911篇
  国内免费   14篇
  2012年   2348篇
  2011年   2725篇
  2010年   394篇
  2009年   190篇
  2008年   2129篇
  2007年   2144篇
  2006年   2083篇
  2005年   1945篇
  2004年   1808篇
  2003年   1822篇
  2002年   1508篇
  2001年   1216篇
  2000年   1705篇
  1999年   657篇
  1998年   86篇
  1997年   56篇
  1996年   56篇
  1995年   56篇
  1994年   32篇
  1993年   26篇
  1992年   40篇
  1991年   34篇
  1990年   29篇
  1989年   32篇
  1988年   27篇
  1987年   41篇
  1986年   26篇
  1985年   14篇
  1984年   37篇
  1983年   28篇
  1982年   17篇
  1981年   14篇
  1980年   17篇
  1978年   15篇
  1975年   14篇
  1974年   16篇
  1970年   18篇
  1968年   13篇
  1959年   33篇
  1958年   65篇
  1957年   70篇
  1956年   60篇
  1955年   51篇
  1954年   47篇
  1953年   42篇
  1952年   49篇
  1951年   25篇
  1950年   36篇
  1949年   37篇
  1948年   30篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
3.
Genome-wide analysis of the SET DOMAIN GROUP family in grapevine   总被引:1,自引:0,他引:1  
The SET DOMAIN GROUP (SDG) proteins represent an evolutionarily-conserved family of epigenetic regulators present in eukaryotes and are putative candidates for the catalysis of lysine methylation in histones. Plant genomes analyses of this family have been performed in arabidopsis, maize, and rice and functional studies have shown that SDG genes are involved in the control of plant development. In this work, we describe the identification and structural characterization of SDG genes in the Vitis vinifera genome. This analysis revealed the presence of 33 putative SDG genes that can be grouped into different classes, as it has been previously described for plants. In addition to the SET domain, the proteins identified possessed other domains in the different classes. As part of our study regarding the growth and development of grapevine, we selected eight genes and their expression levels were analyzed in representative vegetative and reproductive organs of this species. The selected genes showed different patterns of expression during inflorescence and fruit development, suggesting that they participate in these processes. Furthermore, we showed that the expression of selected SDGs changes during viral infection, using as a model Grapevine Leafroll Associated Virus 3-infected symptomatic grapevine leaves and fruits. Our results suggest that developmental changes caused by this virus could be the result of alterations in SDG expression.  相似文献   
4.
5.
6.
7.
8.
The membranes of lipid bodies from the endosperm of seeds of Ricinus communis have long been known to contain an acid lipase (triacylglycerol acyl hydrolase, EC 3.1.1.3). The means by which fat hydrolysis is initiated and controlled in the endosperm of the young seedling are not yet understood, although it is generally assumed that the acid lipase is the enzyme responsible for the conversion of stored triacylglycerols to fatty acids and glycerol. However, the enzyme from seeds is not an effective catalyst at cytoplasmic pH since it has a pH optimum at 4.5 and is virtually inactive above pH 6.0. The results described in this paper show that during early growth of castor seeds the lipid bodies acquire a lipase which is active at neutral pH values. The lipase is absent from dry seeds, appears at day 3, and increases rapidly in activity until day 5. The pattern of appearance of the lipase mirrors that of other enzymes involved in the conversion of fat to sugar. The lipase is stimulated 40-fold by 30 micromolar free Ca2+ and the activity at pH 7.0 to 7.5 adequately accounts for the known rate of triacylglycerol hydrolysis in vivo.  相似文献   
9.
A calcium-dependent but calmodulin-independent protein kinase from soybean   总被引:6,自引:5,他引:1  
A calcium-dependent protein kinase activity from suspension-cultured soybean cells (Glycine max L. Wayne) was shown to be dependent on calcium but not calmodulin. The concentrations of free calcium required for half-maximal histone H1 phosphorylation and autophosphorylation were similar (≈2 micromolar). The protein kinase activity was stimulated 100-fold by ≥10 micromolar-free calcium. When exogenous soybean or bovine brain calmodulin was added in high concentration (1 micromolar) to the purified kinase, calcium-dependent and -independent activities were weakly stimulated (≤2-fold). Bovine serum albumin had a similar effect on both activities. The kinase was separated from a small amount of contaminating calmodulin by sodium dodecyl sulfate polyacrylamide gel electrophoresis. After renaturation the protein kinase autophosphorylated and phosphorylated histone H1 in a calcium-dependent manner. Following electroblotting onto nitrocellulose, the kinase bound 45Ca2+ in the presence of KCl and MgCl2, which indicates that the kinase itself is a high-affinity calcium-binding protein. Also, the mobility of one of two kinase bands in SDS gels was dependent on the presence of calcium. Autophosphorylation of the calmodulin-free kinase was inhibited by the calmodulin-binding compound N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide (W-7), showing that the inhibition of activity by W-7 is independent of calmodulin. These results show that soybean calcium-dependent protein kinase represents a new class of protein kinase which requires calcium but not calmodulin for activity.  相似文献   
10.
Using isopycnic sucrose gradients, we have ascertained the subcellular location of several enzymes involved in the processing of the N-linked oligosaccharides of glycoproteins in developing cotyledons of the common bean, Phaseolus vulgaris. All are localized in the endoplasmic reticulum (ER) or Golgi complex as determined by co-sedimentation with the ER marker, NADH-cytochrome c reductase, or the Golgi marker, glucan synthase I. Glucosidase activity, which removes glucose residues from Glc3Man9(GlcNAc)2, was found exclusively in the ER. All other processing enzymes, which act subsequent to the glucose trimming steps, are associated with the Golgi. These include mannosidase I (removes 1-2 mannose residues from Man6-9[GlcNAc]2), mannosidase II (removes mannose residues from GlcNAcMan5[GlcNAc]2), and fucosyltransferase (transfers a fucose residue to the Asn-linked GlcNAc of appropriate glycans). We have previously reported the localization of two other glycan modifying enzymes (GlcNAc-transferase and xylosyltransferase activities) in the Golgi complex. Attempts at subfractionation of the Golgi fraction on shallow sucrose gradients yielded similar patterns of distribution for all the Golgi processing enzymes. Subfractionation on Percoll gradients resulted in two peaks of the Golgi marker enzyme inosine diphosphatase, whereas the glycan processing enzymes were all enriched in the peak of lower density. These results do not lend support to the hypothesis that N-linked oligosaccharide processing enzymes are associated with Golgi cisternae of different densities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号