首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  4篇
  2010年   1篇
  2005年   1篇
  1996年   2篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Nutrient translocation in chestnut tree stemwood was calculatedfrom the distribution of nutrient content throughout the tissuelife-span. The dynamics of internal translocation were followedduring the crop rotation by means of an age series of five coppicedstands (2–19 years). N, P, K, Ca and Mg contents in treerings were estimated from the concentrations along a verticaland radial gradient and from the ring volume obtained usingstem ring analysis.Real nutrient translocation was calculatedstepwise between successive stages in the age series;apparenttranslocation was computed on a complete tree rotation by comparingthe initial content just after the ring was formed with themineral content in the oldest stand. There was a marked translocationof N, P, K and Ca when the rings were physiologically-activetissues. Real translocation of N, P and K (but not Ca) increasedwith stand age, obviously in parallel with the enlarged stemwoodbiomass reaching 23.2 and 20.6 kg ha-1for K and N in the lastyears of rotation, nearly 5 kg ha-1for Mg and about 3 kg ha-1forCa and P. Potassium was the most mobile element since translocationreached 60% of the total amount immobilized in the stemwoodat the end of the rotation, whereas values for N, P and Mg wereapproximately 25% and 10% for calcium. Total apparent translocationreached respectively 39.2 and 32.4 kg ha-1for K, N, approximately12 and 7 kg ha-1for Mg and Ca and only 4.4 kg ha-1for P. Totalapparent translocation as a percentage of total wood immobilizationwas 114% for K, 83% for Mg, 63% for P, but only 39% for N and24% for calcium. Translocation; nutrient content; stemwood; tree ring; coppice; age series; dynamics; chestnut tree; Castanea sativa Miller  相似文献   
2.
Abstract The natural abundance of the stable isotope 15N was measured in different vegetation components and in the soil of a northern Australian savanna. Most of the vegetation was found to be 15N-depleted compared to atmospheric N2. Herbaceous legumes, perennial grasses, tree legumes, non-legume trees and annual grasses exhibited mean δ15N of ? 1.7, ? 0.8, ? 0.7, 0.0 and + 0.3‰, respectively. These results are in good agreement with previous studies. Legumes exhibit slightly negative values, indicating that they are likely to be nitrogen-fixing plants. Non-legume plants have a δ15N close to zero, which could equally result from non-symbiotic fixation, soil organic matter mineralization, or fresh root litter mineralization. In contrast, soil organic matter was 15N-enriched. Values of δ15N increased with depth and were + 2.5, + 5.2 and +6.1‰ in the 0–10, 10–20 and 20–40cm layers, respectively. Soil organic matter δ15N shows a typical profile of mature soils.  相似文献   
3.
4.
Abstract: Genetic profiling using fecal samples collected noninvasively in the wild can provide managers with an alternative to live-trapping. However, before embarking on a large-scale survey, feasibility of this methodology should be assessed for the focal species. Costs associated with fecal genotyping can be high because of the need for multiple amplifications to prevent and detect errors. Assessing the relative amount of target DNA before genotyping means samples can be eliminated where error rates will be high or amplification success will be low, thereby reducing costs. We collected fecal samples from an endangered population of swift fox (Vulpes velox) and employed target-DNA quantification and a screening protocol to assess sample quality before genetic profiling. Quantification was critical in identifying samples of low quality (68%, <0.2 ng/μL). Comparison of the amplification, from a subset of loci in 25 samples that did not meet the screening criteria, confirmed the effectiveness of this method. The protocol, however, used a considerable amount of DNA, and an assessment of the locus and sample variability allowed us to refine it for future population surveys. Although we did not use <50% of the samples we collected, the remaining samples provided 36 unique genotypes, which corresponded to approximately 70% of animals estimated to be present in the study area. Although obtaining fecal DNA from small carnivores is challenging, our protocol, including the quantification and qualification of DNA, the selection of markers, and the use of postgenotyping analyses, such as DROPOUT, CAPWIRE, and geographic information, provides a more cost-effective way to produce reliable results. The method we have developed is an informative approach that wildlife managers can use to conduct population surveys where the collection of feces is possible without the need for live-trapping.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号