首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  2020年   1篇
  2012年   2篇
  2010年   1篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2001年   1篇
  1996年   1篇
  1995年   2篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
1. Little Mere, U.K., received large quantities of sewage effluent until 1991, when the effluent was diverted. Experiments, carried out in mesocosms in 1992 and 1993, were designed to predict the effects of: (i) reduced external nutrient loading; (ii) reduced internal loading from the sediment; and (iii) recolonization by fish of the better aerated water. Treatments included isolation of the water from the underlying sediment or exposure to the sediment (which lacked plants in 1992, but was covered by Potamogeton berchtoldii in 1993) crossed with different population densities of Rutilus rutilus in 1992 and of Perca fluviatilis in 1993.
2. Exposure to sediment (as opposed to isolation from it) resulted in no net change in the biovolumes of most major algal groups, but this masked major complementary effects on individual species. The experiments showed a decreasing influence of the sediment, between 1992 and 1993, in determining water chemistry, and an increasing pH between years but no increase in cyanophyte dominance. This had been anticipated because a lake upstream provides abundant inocula, and conditions in Little Mere after diversion of effluent were expected to favour cyanophytes.
3. Roach and perch additions to the mesocosms resulted in reductions in Daphnia populations but increases in numbers of small Cladocera and copepods. Plant-associated Cladocera were unaffected by fish. The presence of submerged plants to some extent reduced fish predation effects on Daphnia hyalina .
4. The experimental results in general accurately predicted subsequent events in the open lake.  相似文献   
2.
1. The restoration of deep lakes has traditionally focused on reducing the external phosphorus loading. 2. Following the diversion of sewage effluent, that led to marked reductions in nutrient concentrations in its main inflow, Rostherne Mere has shown no reduction in phosphorus or chlorophyll a concentrations. A shallow lake upstream (Little Mere), however, has shown a marked response to effluent diversion. 3. Nutrient budgets for Rostherne Mere reveal that sewage effluent was by far the most significant external source of total phosphorus and that diffuse drainage from the catchment was the most significant external source of dissolved inorganic nitrogen. Phosphorus loads from groundwater and a bird roost were insignificant. Internal sources of phosphorus were, however, considerable and were largely responsible for the observed delay in recovery. 4. Phosphorus limitation of phytoplankton biomass may never be attainable because of substantial internal and diffuse sources of phosphorus, combined with a long retention time. Nitrogen is likely to be more important in limiting phytoplankton biomass. Control of diffuse nitrogen sources may therefore be more effective in the restoration of the deeper lakes of this region.  相似文献   
3.
1. The combined effects of increasing pH (< 9–11) and increasing densities of perch (0, two, four per enclosure) have been investigated in polyethylene enclosures of volume about 1100 1 in a shallow, fertile lake in Cheshire. 2. Increasing pH decreased carbon dioxide concentrations, chlorophyll a concentrations and diatom biomass. It led to increases in the proportions of Cryptophyta (to pH 10) and Chlorophyta (to pH 11). Although ample inocula were present, significant growths of cyanophytes were not recorded, contrary to expectation. 3. Increasing pH led to increases in numbers of Daphnia hyalina particularly at pH 10 but collapse at pH 11. This persistence at pH 10, independent of perch number, is attributed to reduced feeding of the fish, which survived at this pH. Other zooplankters (Ceriodaphnia spp., Bosmina longirostris, Polyphemus pediculus, Cyclops spp.) all declined with increasing pH. 4. Increasing fish density resulted in an increase in chlorophyll a concentration and in the biomass of Chlorophyta but had no effect on cyanophyte or cryptophyte biomass. 5. Increasing fish density led to declines in Daphnia in the untreated lake-water controls (pH < 9) and at pH 9, but had no effect at pH 10 where Daphnia hyalina was very abundant. Numbers of Ceriodaphnia spp. and Bosmina longirostris increased with increasing fish density, whilst numbers of Polyphemus pediculus and Cyclops spp. were independent of it. 6. The results are discussed in the light of contemporary knowledge of the factors resulting in large cyanophyte growths and of the factors controlling the stability of macrophyte-dominated and phytoplankton-dominated states in shallow lakes. The interaction between pH and fish density and consequent non-linear response of Daphnia hyalina is particularly notable because of the significance of zooplankton grazing in shallow lakes.  相似文献   
4.
1. Bacterial populations associated with fish have previously been documented to be crucial for the production of chemical signals governing the interactions between predator fish and zooplankton prey. 2. In this study, we investigated the roles of fish and mucus‐dwelling bacteria in kairomone production by conducting two sets of experiments related to elimination of bacteria with antibiotics and using fish mucus in bioassays of Daphnia pulex’s diel vertical migration. 3. Daphnia’s migratory response to the antibiotic‐treated fish was about half the strength of the response to the fish cue treatment. Furthermore, when the same antibiotic‐treated fish were removed from the antibiotic‐containing water and transferred into control water for 24 and 48 h, the extent of D. pulex’s migration depended on the length of the incubation period, apparently corresponding to the regeneration of bacterial colonies associated with mucus. The migration pattern observed in the 24 h treatment was similar to that of antibiotic‐treated fish. On the other hand, a pronounced migration occurred in the 48 h following antibiotic treatment; here, we found a higher density of fish surface dwelling bacteria than at the start of the experiment. 4. In the experiment involving fish mucus, the mucus‐enriched control water induced a weak response similar to antibiotic‐treated fish. 5. On the basis of the results from the two experiments, we suggest that both fish and fish mucus‐dwelling bacteria interact in the release of kairomone in ecologically relevant quantities.  相似文献   
5.
1. Lake restoration from eutrophication often rests on a simple paradigm that restriction of phosphorus sources will result in recovery of former relatively clear‐water states. This view has apparently arisen from early successful restorations of deep lakes in catchments of poorly weathered rocks. Lakes in the lowlands, however, particularly shallow ones, have proved less tractable to restoration. This study of three lowland lakes provides insights that illuminate a more complex picture. 2. The lakes lie in a sequence along a single stream in a mixed urban and rural landscape. Severely deoxygenating effluent from an overloaded sewage treatment works was diverted from the catchment in 1991. Effects on two lakes, Little Mere (zmax <2 m) and Rostherne Mere (zmax 31 m) were followed until 2002. Mere Mere (zmax = 8 m), upstream of the former works, acted as a comparison for changes in water chemistry. Mere Mere showed no change in total phosphorus (TP), total inorganic nitrogen, or planktonic chlorophyll a concentrations. Increased winter rainfall was associated with higher winter soluble reactive phosphorus (SRP) and ammonium concentrations in its water. 3. Little Mere changed from a deoxygenated, highly enriched, fishless system, with large populations of Daphnia magna Straus, clear water and about 40% aquatic plant cover, to a slightly less clear system following diversion. Daphnia magna was replaced by D. hyalina Leydig as fish recolonised. Spring peaks of chlorophyll a declined but summer concentrations increased significantly. Annual mean chlorophyll a concentrations thus showed no change. Submerged plants became more abundant (up to 100% cover), with fluctuating community composition from year to year. Summer release of SRP from the sediment was substantial and has not decreased since 1993. The summer phytoplankton was apparently controlled by nitrogen availability perhaps with some influence of zooplankton grazing. SRP was always very abundant. The lake appeared to have reached a quasi‐stable state by 2002. 5. Rostherne Mere showed a steady decline in TP and SRP concentrations following effluent diversion apparently as a result of steady dilution by water with lower phosphorus concentration. Decline in phosphorus concentrations was much less rapid than expected because of internal remobilisation from the hypolimnion and sediments. There have been no changes in chlorophyll a concentration or of nitrogen availability and by 2002 the phytoplankton probably remained limited by a combination of mixing, grazing and nitrogen. 6. A seeming paradox is, thus, that immense changes in phosphorus budgets have shown no consequences for phytoplankton chlorophyll concentrations in either of the lakes, although the seasonal distribution has altered in Little Mere. Although these case studies deviate from others, for both shallow and deep lakes, they represent distinctive situations rather than undermining conventional models.  相似文献   
6.
1. Little Mere, U.K., received large quantities of sewage effluent until 1991, when the effluent was diverted. Experiments, carried out in mesocosms in 1992 and 1993, were designed to predict the effects of: (i) reduced external nutrient loading; (ii) reduced internal loading from the sediment; and (iii) recolonization by fish of the better aerated water. Treatments included isolation of the water from the underlying sediment or exposure to the sediment (which lacked plants in 1992, but was covered by Potamogeton berchtoldii in 1993) crossed with different population densities of Rutilus rutilus in 1992 and of Perca fluviatilis in 1993.
2. Exposure to sediment (as opposed to isolation from it) resulted in no net change in the biovolumes of most major algal groups, but this masked major complementary effects on individual species. The experiments showed a decreasing influence of the sediment, between 1992 and 1993, in determining water chemistry, and an increasing pH between years but no increase in cyanophyte dominance. This had been anticipated because a lake upstream provides abundant inocula, and conditions in Little Mere after diversion of effluent were expected to favour cyanophytes.
3. Roach and perch additions to the mesocosms resulted in reductions in Daphnia populations but increases in numbers of small Cladocera and copepods. Plant-associated Cladocera were unaffected by fish. The presence of submerged plants to some extent reduced fish predation effects on Daphnia hyalina .
4. The experimental results in general accurately predicted subsequent events in the open lake.  相似文献   
7.
1. Water‐level fluctuations are typical of lakes located in the semi‐arid Mediterranean region, which is characterised by warm rainy winters and hot dry summers. Ongoing climate change may exacerbate fluctuations and lead to more severe episodes of drought, so information on the effects of water level on the functioning of lake ecosystems in such regions is crucial. 2. In eutrophic Lake Eymir, Turkey, we conducted a 4‐month (summer) field experiment using cylindrical 0.8‐m‐ (low‐water‐level) and 1.6‐m‐deep (high‐water‐level) mesocosms (kept open to the sediment and atmosphere). Fish (tench, Tinca tinca, and bleak, Alburnus escherichii) were added to half of the mesocosms, while the rest were kept fishless. Ten shoots of Potamogeton pectinatus were transplanted to each mesocosm. 3. Sampling for physicochemical variables, chlorophyll a (chl‐a), zooplankton and per cent plant volume inhabited (PVI%) by macrophytes was conducted weekly during the first 5 weeks, and subsequently biweekly. Macrophytes were harvested on the last sampling date. During the course of the experiment, the water level decreased by 0.41 ± 0.06 m. 4. Throughout the experiment, fish affected zooplankton abundance (?), nutrient concentrations (+), chl‐a (+) and water clarity (?) most strongly in the low‐water‐level mesocosms and the zooplankton community shifted towards dominance of small‐sized forms. The fishless mesocosms had a higher zooplankton/phytoplankton ratio, suggesting higher grazing. 5. Greatest macrophyte growth was observed in the low‐water‐level fishless mesocosms. However, despite high nutrient concentrations and low water clarity, macrophytes were also abundant in the fish mesocosms and particularly increased following a water‐level decrease from midsummer onwards. Macrophyte growth was poor in the high‐water‐level mesocosms, even in the fishless ones with high water clarity. This was ascribed to extensive periphyton development reducing light availability for the macrophytes. 6. Our results indicate that a reduction in water level during summer may help maintain the growth of macrophytes in Mediterranean eutrophic shallow lakes, despite a strong negative effect of fish predation on water clarity. It is therefore probable that an expected negative effect of global climate change on water clarity because of eutrophication and enhanced top‐down control of fish may be, at least partly, counteracted by reduced water level, provided that physical disturbance is not severe.  相似文献   
8.
1. Different behavioural responses of planktonic animals to their main predators, fish, have been reported from shallow lakes. In north temperate lakes, large‐bodied zooplankton may seek refuge from predation among macrophytes, whereas in subtropical lakes, avoidance of macrophytes has been observed. The prevalent behaviour probably depends on the characteristics of the fish community, which in Mediterranean lakes is typically dispersed in both the open water zone and in the littoral, as in temperate lakes, and is dominated by small size classes, as in subtropical lakes. 2. We performed ‘habitat choice’ experiments to test the response of Daphnia magna to predation cues at both the horizontal and vertical level by mimicking a ‘shallow littoral’ zone with plants and a ‘deeper pelagic’ zone with sediments. 3. Initial separate response experiments showed that natural plants, artificial plants and predation cues all repelled D. magna in the absence of other stimuli, while sediments alone did not trigger any significant response by D. magna. 4. The habitat choice experiments showed that, in the presence of predation cues and absence of plants, Daphnia moved towards areas with sediment. In the presence of both plants and sediments, Daphnia moved away from the plants towards the sediments under both shallow and deep water treatment conditions. 5. Based on these results, we suggest that Daphnia in Mediterranean shallow lakes avoid submerged macrophytes and instead prefer to hide near the sediment when exposed to predation risk, as also observed in subtropical shallow lakes. This pattern is not likely to change with water level alterations, a common feature of lakes in the region, even if the effectiveness of the refuge may be reduced.  相似文献   
9.
1. Recent experimental and field studies on temperate shallow lakes indicate that nitrogen may play a greater role in their functioning than previously thought. Several studies document that abundance and richness of submerged macrophytes, both central in shallow lake ecology, may decrease with increasing nitrogen loading, especially at high phosphorus levels. However, the role of nitrogen in warm lakes with fluctuating water regimes remains to be described in detail. 2. The effect of increasing nitrate and phosphate concentrations on submerged macrophyte growth was examined in a 3‐month mesocosm experiment conducted in summer in a shallow freshwater lake on the north western coast of Turkey with a Mediterranean climate. Twenty four field mesocosms, open to the sediment and atmosphere, were stocked with Myriophyllum spicatum shoots and small cyprinid fish. Three nitrate loadings in combination with two phosphate loadings were applied in a fourfold replicated design. 3. Mean ± SD nutrient concentrations maintained throughout the experiment were 0.55 ± 0.17, 2.2 ± 0.97, 9.2 ± 5.45 mg L?1 total nitrogen and 55 ± 19.2, 73 ± 22.9 μg L?1 total phosphorus. Mean periphyton biomass increased with increasing nutrient concentrations and peaked at the highest nitrogen and phosphorus loadings, while the mean phytoplankton biomass remained relatively low in all treatments. 4. Percent volume inhabited (% PVI) by macrophytes throughout the experiment and total macrophyte biomass at the end of the experiment did not differ among treatments. In addition to stocked M. spicatum, Ceratophyllum demersum and Potamogeton crispus appeared in the majority of the mesocosms. The plants grew continuously up to 50% PVI throughout the experiment and remained resilient to shading provided by periphyton and phytoplankton. 5. The mean summer air temperature in 2007 was 2.2 °C higher than the average of the last 32 years, which resulted in a water level decrease of 0.3 m in the mesocosms over three months. This might have counteracted the shading of submerged macrophytes provided by phytoplankton and periphyton. The results of the experiment are consistent with observations of higher macrophyte resilience to nutrient loading in Mediterranean lakes compared with northern temperate lakes.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号