首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
排序方式: 共有9条查询结果,搜索用时 46 毫秒
1
1.
2.
A total of 107 putative ericoid mycorrhizal endophytes were isolated from hair roots of Calluna vulgaris from two abandoned arsenic/copper mine sites and a natural heathland site in southwest England. The endophytes were initially grouped as 14 RFLP types, based on the results of ITS-RFLP analysis using the restriction endonucleases Hin f I, Rsa I and Hae III. ITS sequences were obtained for representative isolates from each RFLP type and compared phylogenetically with sequences for known ericoid mycorrhizal endophytes and selected ascomycetes. The majority of endophyte isolates (62–92%) from each site were identified as Hymenoscyphus ericae , but a number of other less common mycorrhizal RFLP types were also identified, all of which appear to have strong affinities with the order Leotiales. None of the less common RFLP types was isolated from C. vulgaris at more than one field site. Neighbour-joining analysis indicated similarities between the endophytes from C. vulgaris and mycorrhizal endophytes isolated from other Ericaceae and Epacridaceae hosts in North America and Australia.  相似文献   
3.
In Holcus lanatus L. phosphate and arsenate are taken up bythe same transport system. Short-term uptake kinetics of thehigh affinity arsenate transport system were determined in excisedroots of arsenate-tolerant and non-tolerant genotypes. In tolerantplants the Vmax of ion uptake in plants grown in phosphate-freemedia was decreased compared to non-tolerant plants, and theaffinity of the uptake system was lower than in the non-tolerantplants. Both the reduction in Vmax and the increase in Km ledto reduced arsenate influx into tolerant roots. When the twogenotypes were grown in nutrient solution containing high levelsof phosphate, there was little change in the uptake kineticsin tolerant plants. In non-tolerant plants, however, there wasa marked decrease in the Vmax to the level of the tolerant plantsbut with little change in the Km. This suggests that the lowrate of arsenate uptake over a wide range of differing rootphosphate status is due to loss of induction of the synthesisof the arsenate (phosphate) carrier. Key words: Arsenate, Holcus lanatus L., phosphate uptake, tolerance mechanisms, uptake mechanisms  相似文献   
4.
The effects of Cd and Zn on cross-colonization by Paxillus involutus of Scots pine seedlings was examined by using pairs of ectomycorrhizal (ECM) and non-mycorrhizal (NM) seedlings grown in the same vessel. This was done to assess, first, the ability of P. involutus to colonize NM Scots pine seedlings by growth from colonized roots of other Scots pine seedlings in the presence of Cd or Zn, and, second whether ECM colonization of Scots pine by P. involutus provided a competitive advantage over NM seedlings. Ectomycorrhizal colonization of Scots pine was shown to be more sensitive than Scots pine itself to Cd and Zn, but prior colonization did provide a competitive advantage with respect to biomass production. This beneficial effect over NM seedlings was, however, equal in the control, Cd and Zn treatments, and was due simply to growth stimulation in the presence of ECM colonization. Cross-colonization from an ECM to a NM seedling was reduced but not prevented by Cd and Zn. Cd had a more negative effect on cross-colonization than on initial colonization of seedlings, whereas Zn had an equally inhibitory effect on both parameters. These results have important implications for plant establishment on metal-contaminated sites. If cross-colonization between plants is reduced by toxic metals, plant establishment on contaminated sites might be retarded.  相似文献   
5.
6.
7.
Isolation and study of metal tolerant and hypersensitive strains of higher plant (and yeast) species has greatly increased our knowledge of the individual pathways that are involved in tolerance. Plants have both constitutive (present in most phenotypes) and adaptive (present only in tolerant phenotypes) mechanisms for coping with elevated metal concentrations. Where studies on the mechanisms of tolerance fall down is in their failure to integrate tolerance mechanisms within cell or whole-plant function by not relating adaptive mechanisms to constitutive mechanisms. This failure often distorts the relative importance of a proposed tolerance mechanism, and indeed has confused the search for adaptive mechanisms. The fundamental goal of both constitutive and adaptive mechanisms is to limit the perturbation of cell homeostasis after exposure to metals so that normal or near-normal physiological function may take place. Consideration of the response to metals at a cellular rather than a biochemical level will lead to a greater understanding of mechanisms to withstand elevated levels of metals in both contaminated and uncontaminated environments. Recent advances in the study of Al, As, Cd, and Cu tolerance and hypersensitivity are reported with respect to the cellular response to toxic metals. The role of genetics in unravelling tolerance mechanisms is also considered.  相似文献   
8.
9.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号