首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   4篇
  2011年   6篇
  2010年   3篇
  2009年   3篇
  2008年   3篇
  2007年   4篇
  2006年   4篇
  2005年   2篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  1998年   2篇
  1993年   1篇
  1975年   1篇
排序方式: 共有41条查询结果,搜索用时 187 毫秒
1.
1. Understanding the trophic status of consumers in freshwater habitats is central to understanding their ecological roles and significance. Tadpoles are a diverse and abundant component of many freshwater habitats, yet we know relatively little about their feeding ecology and true trophic status compared with many other consumer groups. While many tadpole species are labelled herbivores or detritivores, there is surprisingly little evidence to support these trophic assignments. 2. Here we discuss shortcomings in our knowledge of the feeding ecology and trophic status of tadpoles and provide suggestions and examples of how we can more accurately quantify their trophic status and ecological significance. 3. Given the catastrophic amphibian declines that are ongoing in many regions of the planet, there is a sense of urgency regarding this information. Understanding the varied ecological roles of tadpoles will allow for more effective conservation of remaining populations, benefit captive breeding programmes, and allow for more accurate predictions of the ecological consequences of their losses.  相似文献   
2.
Abstract: Habitat selection among vertebrates entails decision making at a number of spatial scales. An understanding of factors influencing decisions at each of these scales is required for the effective management of wildlife populations. This study investigates the foraging ecology of a population of Glossy Black‐cockatoos in central New South Wales. We took advantage of the characteristic feeding sign produced by Glossy Black‐cockatoos to examine factors influencing habitat selection at multiple spatial scales. Birds preferred to forage at sites where food was abundant and avoided open sites where the predation risk may be greater. Their two food species, Allocasuarina diminuta and Allocasuarina gymnanthera, differed in profitability (kernel intake rate as measured by the ratio of seed weight to total seed and cone weight), as did trees within a species. Both species were utilized extensively, although foraging intensity was greater at sites where the more profitable species was present. In order to maximize their food intake, birds selected individual trees on the basis of cone abundance and profitability. Cones produced in the previous year were preferred.  相似文献   
3.
Abstract: Fishes include more than half of all living animals with backbones, but large‐scale palaeobiological patterns in this assemblage have not received the same attention as those for terrestrial vertebrates. Previous surveys of the fish record have generally been anecdotal, or limited either in their stratigraphic or in their taxonomic scope. Here, we provide a broad overview of the Phanerozoic history of fish diversity, placing a special emphasis on intervals of turnover, evolutionary radiation, and extinction. In particular, we provide in‐depth reviews of changes during, and ecological and evolutionary recovery after, the end‐Devonian (Hangenberg) and Cretaceous–Palaeogene (K–Pg) extinctions.  相似文献   
4.
The Wet Tropics bioregion of north‐eastern Australia has been subject to extensive fluctuations in climate throughout the late Pliocene and Pleistocene. Cycles of rainforest contraction and expansion of dry sclerophyll forest associated with such climatic fluctuations are postulated to have played a major role in driving geographical endemism in terrestrial rainforest taxa. Consequences for the distributions of aquatic organisms, however, are poorly understood. The Australian non‐biting midge species Echinocladius martini Cranston (Diptera: Chironomidae), although restricted to cool, well‐forested freshwater streams, has been considered to be able to disperse among populations located in isolated rainforest pockets during periods of sclerophyllous forest expansion, potentially limiting the effect of climatic fluctuations on patterns of endemism. In this study, mitochondrial COI and 16S data were analysed for E. martini collected from eight sites spanning the Wet Tropics bioregion to assess the scale and extent of phylogeographic structure. Analyses of genetic structure showed several highly divergent cryptic lineages with restricted geographical distributions. Within one of the identified lineages, strong genetic structure implied that dispersal among proximate (<1 km apart) streams was extremely restricted. The results suggest that vicariant processes, most likely due to the systemic drying of the Australian continent during the Plio‐Pleistocene, might have fragmented historical E. martini populations and, hence, promoted divergence in allopatry.  相似文献   
5.
Recent changes in the seasonal timing (phenology) of familiar biological events have been one of the most conspicuous signs of climate change. However, the lack of a standardized approach to analysing change has hampered assessment of consistency in such changes among different taxa and trophic levels and across freshwater, terrestrial and marine environments. We present a standardized assessment of 25 532 rates of phenological change for 726 UK terrestrial, freshwater and marine taxa. The majority of spring and summer events have advanced, and more rapidly than previously documented. Such consistency is indicative of shared large scale drivers. Furthermore, average rates of change have accelerated in a way that is consistent with observed warming trends. Less coherent patterns in some groups of organisms point to the agency of more local scale processes and multiple drivers. For the first time we show a broad scale signal of differential phenological change among trophic levels; across environments advances in timing were slowest for secondary consumers, thus heightening the potential risk of temporal mismatch in key trophic interactions. If current patterns and rates of phenological change are indicative of future trends, future climate warming may exacerbate trophic mismatching, further disrupting the functioning, persistence and resilience of many ecosystems and having a major impact on ecosystem services.  相似文献   
6.
Abstract: Apex predators are often threatened with extinction, and reintroduction is one method conservation managers are using to secure their persistence. Yet the ability to predict what these predators will eat upon reintroduction is lacking. Here we test predictions of the diet of the lion (Panthera leo), derived from dietary electivity index and optimality theory, using independent data collected from reintroduced and resident populations. We solved the Jacobs’ index preference equation for each prey species of the lion using values calculated by Hayward and Kerley (2005) and prey abundance data from 4 reintroduction sites and one resident lion population over several years. We then compared these estimates with actual kill data gathered from each site and time period, using the log-likelihood ratio and linear regression. The model precisely predicted the observed number of kills in 9 of the 13 tests. There was a highly significant linear relationship between the number of lion kills predicted to occur at a site and the number observed for all but one site (x̄r2 = 0.612; β = 1.03). Predicting predator diet will allow conservation managers to stop responding and start planning in advance for reintroductions and environmental variation. Furthermore, ensuring that sufficient food resources are available is likely to increase the success of reintroduction projects. In addition, managers responsible for threatened prey species will be able to predict the vulnerability of these species to predation in the event of predator reintroductions or changes in abundance. These methods are applicable to virtually all large predators that have been sufficiently studied.  相似文献   
7.
A population of Common Blackbirds Turdus merula was studied to investigate the relationships between the presence of blood parasites and host morphometrics, a putative sexually selected trait (bill colour), and reproductive parameters. Haematozoa of four genera were detected and their prevalence was high. Infection was negatively associated with adult morphometrics: adults infected with Leucocytozoon were in relatively poor body condition and had shorter wings than uninfected birds. The bill colour of males infected with Plasmodium tended to be duller than that of uninfected males, and in females Haemoproteus infection was significantly positively associated with bill coloration. Haematozoan infection of females was unrelated to measured reproductive parameters, and there was no relationship between blood parasite infection and the provision of parental care.  相似文献   
8.
1. Analysis of drainage networks provides a framework to evaluate the densities and distributions of prey species relative to locations of their predators. Upstream migration by diadromous shrimp (Atya lanipes and Xiphocaris elongata) during their life cycle provides access to headwater refugia from fish predation, which is intense in estuaries and coastal rivers. 2. We postulate that geomorphic barriers (such as large, steep waterfalls >3.5 m in height), can directly limit the distribution of predatory fishes and, indirectly, affect the densities of their prey (freshwater shrimps) in headwater streams. 3. We compared densities of shrimp in pools above and below waterfalls, in four headwater tributaries in two river basins of the Luquillo Mountains of northeastern Puerto Rico. We measured shrimp densities twice a year over 8 years (1998–2005) in Prieta, Toronja, Bisley 3 and Bisley 5 streams, which differ in drainage network positions relative to steep waterfalls in Río Espíritu Santo and Río Mameyes. 4. Predatory fishes are absent in the Prieta and Toronja pools and present in Bisely 3 and in lower Bisley 5 pools. Atya lanipes and X. elongata rarely occur in the Bisley streams where predatory fishes are present but these shrimps are abundant in Prieta and Toronja, streams lacking predatory fishes. 5. The mean carapace length of X. elongata is longer in pools where fish are present (Bisley 3 and lower Bisley 5) than in pools lacking fish (Prieta, Toronja, Upper Bisley 5). The increased body size is primarily due to significantly longer rostrums of individuals in stream reaches with fish (below waterfall barriers) than in those reaches lacking fish (above waterfall barriers). Rostrum length may be an adaptation to avoid predation by visually feeding fishes. 6. Atya lanipes and X. elongata distributions and densities were predicted primarily by drainage network position relative to the presence or absence of predatory fishes. High, steep waterfalls effectively impeded fish from moving upstream and created a spatial refuge. Xiphocaris elongata may rely on size refugia (longer rostrum) to minimize predation where spatial refugia are lacking.  相似文献   
9.
We used isodars to analyse habitat‐dependent population regulation by long‐nosed bandicoots Perameles nasuta during an irruption and subsequent population crash in three habitats (heath, woodland and forest) at Booderee National Park, south‐eastern Australia. Specifically, we aimed to see whether patterns of habitat‐dependent population regulation matched a priori estimates of quantitative and qualitative differences between habitats. We also tested if habitat preference changed between the increasing and decreasing phase of the irruption as predicted by the reciprocating dispersal theory. Quantitative differences in habitat quality were indexed by the relative abundance of the main food of long‐nosed bandicoots (terrestrial invertebrates), while qualitative differences were indexed by the availability of refuge from predation (vegetation understorey density). One index of fitness, body weight, was highest in forest, and lowest in heath, suggesting an ideal despotic model of habitat selection. Over the entire course of the irruption, there was density‐dependent habitat selection with forest and woodland both quantitatively superior to heath. This reflected the overall abundance of invertebrates with highest abundance in woodland and forest and less in heath. Isodar analysis also revealed that although forest was quantitatively better than heath and equivalent to woodland it was qualitatively poorer than either habitat. Heath had a higher density of understorey than woodland and woodland having a higher density of understorey than forest giving crossover population regulation. When the increasing and declining phase of the irruption were analysed separately, no habitat was quantitatively superior to any other during either phase. The lack of switching in preference between habitats from the increasing to the declining phase of the irruption and the virtual absence of any dispersal by adults, does not support the reciprocating dispersal hypothesis.  相似文献   
10.
The question of how tropical trees cope with infertile soils has been challenging to address, in part, because fine root dynamics must be studied in situ. We used annual fertilization with nitrogen (N as urea, 12.5 g N m?2 year?1), phosphorus (P as superphosphate, 5 g P m?2 year?1) and potassium (K as KCl, 5 g K m?2 year?1) within 38 ha of old‐growth lowland tropical moist forest in Panama and examined fine root dynamics with minirhizotron images. We expected that added P, above all, would (i) decrease fine root biomass but, (ii) have no impact on fine root turnover. Soil in the study area was moderately acidic (pH = 5.28), had moderate concentrations of exchangeable base cations (13.4 cmol kg?1), low concentrations of Bray‐extractable phosphate (PO4 = 2.2 mg kg?1), and modest concentrations of KCl‐extractable nitrate (NO3 = 5.0 mg kg?1) and KCl‐extractable ammonium (NH4 = 15.5 mg kg?1). Added N increased concentrations of KCl‐extractable NO3 and acidified the soil by one pH unit. Added P increased concentrations of Bray‐extractable PO4 and P in the labile fraction. Concentrations of exchangeable K were elevated in K addition plots but reduced by N additions. Fine root dynamics responded to added K rather than added P. After 2 years, added K decreased fine root biomass from 330 to 275 g m?2. The turnover coefficient of fine roots <1 mm diameter ranged from 2.6 to 4.4 per year, and the largest values occurred in plots with added K. This study supported the view that biomass and dynamics of fine roots respond to soil nutrient availability in species‐rich, lowland tropical moist forest. However, K rather than P elicited root responses. Fine roots smaller than 1 mm have a short lifetime (<140 days), and control of fine root production by nutrient availability in tropical forests deserves more study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号