首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  1篇
  2012年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
Although there is now a considerable literature on the inhibition of leaf respiration (CO2 evolution) by light, little is known about the effect of other environmental conditions on day respiratory metabolism. In particular, CO2 and O2 mole fractions are assumed to cause changes in the tricarboxylic acid pathway (TCAP) but the amplitude and even the direction of such changes are still a matter of debate. Here, we took advantage of isotopic techniques, new simple equations and instant freeze sampling to follow respiratory metabolism in illuminated cocklebur leaves (Xanthium strumarium L.) under different CO2/O2 conditions. Gas exchange coupled to online isotopic analysis showed that CO2 evolved by leaves in the light came from ‘old’ carbon skeletons and there was a slight decrease in 13C natural abundance when [CO2] increased. This suggested the involvement of enzymatic steps fractionating more strongly against 13C and thus increasingly limiting for the metabolic respiratory flux as [CO2] increased. Isotopic labelling with 13C2‐2,4‐citrate lead to 13C‐enriched Glu and 2‐oxoglutarate (2OG), clearly demonstrating poor metabolism of citrate by the TCAP. There was a clear relationship between the ribulose‐1,5‐bisphosphate oxygenation‐to‐carboxylation ratio (vo/vc) and the 13C commitment to 2OG, demonstrating that 2OG and Glu synthesis via the TCAP is positively influenced by photorespiration.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号