首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  3篇
  2012年   1篇
  2009年   2篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
The brown bear has proved a useful model for studying Late Quaternary mammalian phylogeography. However, information is lacking from northern continental Eurasia, which constitutes a large part of the species' current distribution. We analysed mitochondrial DNA sequences (totalling 1943 bp) from 205 bears from northeast Europe and Russia in order to characterize the maternal phylogeography of bears in this region. We also estimated the formation times of the sampled brown bear lineages and those of its extinct relative, the cave bear.
Four closely related haplogroups belonging to a single mitochondrial subclade were identified in northern continental Eurasia. Several haplotypes were found throughout the whole study area, while one haplogroup was restricted to Kamchatka. The haplotype network, estimated divergence times and various statistical tests indicated that bears in northern continental Eurasia recently underwent a sudden expansion, preceded by a severe bottleneck. This brown bear population was therefore most likely founded by a small number of bears that were restricted to a single refuge area during the last glacial maximum. This pattern has been described previously for other mammal species and as such may represent one general model for the phylogeography of Eurasian mammals. Bayesian divergence time estimates are presented for different brown and cave bear clades. Moreover, our results demonstrate the extent of substitution rate variation occurring throughout the phylogenetic tree, highlighting the need for appropriate calibration when estimating divergence times.  相似文献   
2.
Global amphibian declines are linked with the presence of specific, highly virulent genotypes of the emerging fungal disease chytridiomycosis caused by Batrachochytrium dendrobatidis (Bd) known as the global panzootic lineage (Bd‐GPL). The global trade in amphibians for human consumption is suspected to have facilitated emergence of the disease, but evidence to support this is largely lacking. Here, we investigated the role the Lithobates catesbeianus (North American bullfrog) trade in spreading Bd genotypes by comparing strains associated with L. catesbeianus to a global panel using 36 sequenced loci from multiple chromosomal regions. Most bullfrogs were infected with Bd‐GPL genotypes, but we also detected novel, highly divergent Bd genotypes (Bd‐Brazil) from a live bullfrog in a US market and from native Brazilian anurans in the Atlantic Forest where bullfrogs are widely farmed. Sexual reproduction was also detected for the first time in Bd in the form of a hybrid genotype between the Bd‐GPL and Bd‐Brazil lineages in the Atlantic Forest. Despite the demonstration that ribosomal RNA types in Bd fail to undergo concerted evolution (over 20 sequence types may be found in a single strain), the Bd‐GPL and Bd‐Brazil lineages form largely separate clusters of related internal transcribed spacer (ITS) RNA sequences. Using ITS sequences, we then demonstrate the presence of Bd‐Brazil in Japan, primarily on invasive L. catesbeianus. The finding that Bd is capable of sexual reproduction between panzootic and endemic genotypes emphasizes the risk of international wildlife trade as a source of additional Bd epizootics owing to hybridization.  相似文献   
3.
Marine ecosystems such as the Baltic Sea are currently under strong atmospheric and anthropogenic pressure. Besides natural and human-induced changes in climate, major anthropogenic drivers such as overfishing and anthropogenic eutrophication are significantly affecting ecosystem structure and function. Recently, studies demonstrated the existence of alternative stable states in various terrestrial and aquatic ecosystems. These so-called ecosystem regime shifts have been explained mainly as a result of multiple causes, e.g. climatic regime shifts, overexploitation or a combination of both. The occurrence of ecosystem regime shifts has important management implications, as they can cause significant losses of ecological and economic resources. Because of hysteresis in ecosystem responses, restoring regimes considered as favourable may require drastic and expensive management actions. Also the Baltic Sea, the largest brackish water body in the world ocean, and its ecosystems are strongly affected by atmospheric and anthropogenic drivers. Here, we present results of an analysis of the state and development of the Central Baltic Sea ecosystem integrating hydroclimatic, nutrient, phyto- and zooplankton as well as fisheries data. Our analyses of 52 biotic and abiotic variables using multivariate statistics demonstrated a major reorganization of the ecosystem and identified two stable states between 1974 and 2005, separated by a transition period in 1988–1993. We show the change in Baltic ecosystem structure to have the characteristics of a discontinuous regime shift, initiated by climate-induced changes in the abiotic environment and stabilized by fisheries-induced feedback loops in the food web. Our results indicate the importance of maintaining the resilience of an ecosystem to atmospherically induced environmental change by reducing the anthropogenic impact.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号