首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  1997年   1篇
  1996年   1篇
  1985年   1篇
  1976年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
The effect of light in activating fructose-1,6 biphosphate phosphatase (E.C. 3.1.3.11), sedoheptulose-1,7, biphosphate phosphatase (E.C. 3.1.3.11), ribulose-5 phosphate kinase (E.C. 2.7.1.19), ribulose-1,5 biphosphate carboxylase (E.C. 4.1.1.39) and (NADPH) glyceraldehyde-3 phosphate dehydrogenase (E.C. 1.2.1.13) in intact spinach chloroplasts in the presence of antimycin A, tetramethylethylenediamine (TMEDA) or chlorophenyl-1,1-dimethylurea (CMU) was examined. Antimycin A and TMEDA were added as stimulating agents for photosynthetic electron transfer in intact chloroplasts while CMU was added for its inhibitory characteristics. Light exerted its control through the mediation of the photosynthetic electron transfer. Antimycin A and TMEDA promoted the light activation. CMU nullified the light activation as well as the stimulatory effect of antimycin A and TMEDA. Thus the control by light of the activities of the Calvin cycle enzymes involves a reduced agent formed by the photosynthetic electron transport chain. From the presently available evidence, it seems appropriate to hypothesize that the light activation of the enzymes is not a single mechanism. In fact three types of enzymes can be distinguished: Ru-5 P kinase and (NADPH) G-3 P dehydrogenase, maximal activation of which appears within the first minute of illumination and is promoted by antimycin A and by TMEDA; F-1,6 P2 phosphatase and S-1,7 P2 phosphatase, ferredoxin-dependent enzymes, activation of which is slightly slower but is also promoted by antimycin A and by TMEDA; finally Ru-1,5 P2 carboxylase, activation of which is still slower and characterized by the absence of any response to antimycin A as well as to TMEDA.  相似文献   
2.
Using isoelectric focusing, the zymograms of 23 pathogenic and nonpathogenic Naegleria strains were studied for the activity of 16 enzymes. Certain enzymes (lactate dehydrogenase, L-threonine dehydrogenase, superoxide dismutase, acid phosphatase, malic enzyme, and leucine aminopeptidase) proved particularly useful from a practical point of view as they allow easy and reliable identification of pathogenic N. fowleri and N. australiensis as well as nonpathogenic N. lovaniensis strains. Genetic interpretation of these zymograms gave estimates of genetic distances that largely confirmed the taxonomic position of the Naegleria species. In addition, the genetic data suggest that there are two main phylogenetic groups in the genus Naegleria.  相似文献   
3.
The proliferation of GM16 and 4CDTras-transformed newborn rat adrenocortical (RTAC) cells and Y1 mouse adrenal tumor cells was inhibited by beticolins, the fungal toxins extracted fromCercospora beticola, at submicromolar concentrations in a dose-dependent manner. Inhibitory concentrations for half the maximum inhibition were 150, 75 and 25 nm for beticolin-1 and 230, 150 and 50 nm for beticolin-2 in GM16, 4CDT and Y1 cells respectively. Beticolins strongly inhibited the production of 11β-hydroxysteroids on the second and third days of treatment in a dose-dependent manner between 0.1 and 1 μm . Beticolins were shown by confocal microscopy to be localized in cytoplasmic organelles about 30–40 min after treatment. This finding favors a direct action of beticolins on mitochondrial steroid 11β-hydroxylase albeit another less direct mechanism involving a cytoplasmic signaling pathway cannot be excluded.  相似文献   
4.
We analyse the relationship between active oxygen species (AOS) production and pH changes induced in tobacco cells by cryptogein, a fungal proteinaceous elicitor of defence mechanisms in plants. When tobacco cells were treated with cryptogein, an intracellular acidification, an alkalinization of the extracellular medium and a transient burst of AOS (H2O2) were observed. Treatment of elicited cells with either diphenyleneiodonium (DPI), an inhibitor of the neutrophil NADPH oxidase, or Tiron, which scavenges O2˙? abolished AOS production. These data suggest the involvement of a NADPH oxidase-like enzyme leading to H2O2 production through O2˙? dismutation. Although H2O2 production could be, per se, the origin of the pH changes observed, we showed that it was not the main cause, since DPI and Tiron did not inhibit extracellular alkalinization. On the other hand, cryptogein-induced changes in pH could be abolished using fusicoccin (FC), which is known to stimulate the plasmalemma H+ ATPase. Consequently, the observed changes in pH induced by cryptogein could be mainly due to the inhibition of the plasmalemma H+-ATPase activity. Furthermore, changes in extracellular pH were shown to modulate the intensity of AOS production by elicited cells. The possible regulation of the NAD(P)H oxidase activity of plant cells by changes in pH is further discussed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号