首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2篇
  1987年   1篇
  1984年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Potassium-Ammonium Uptake Interactions in Tobacco Seedlings   总被引:6,自引:0,他引:6  
Short-term (< 12 h) uptake experiments were conducted with6–7-week-old tobacco (Nicotiana tabacum L. cv. Ky 14)seedlings to determine absorption interactions between K+ andNH4+. At equal solution concentrations (0.5 mol m–3) netK+ uptake was inhibited 30–35% by NH4+ and NH4+ uptakewas decreased 9–24%. Removal of NH4+ resulted in completerecovery in K+ uptake rate, but NH4+ uptake rate did not recoverwhen K+ was removed. In both cases, inhibition of the uptakerate of one cation saturated as the concentration of the othercation was increased up to 0.5 mol m–3. The relative effectof K+-NH4+ interactions was not altered when Cl- was replacedwith SO42–, but the magnitudes of the uptake rates wereless in the absence of Cl-. The Vmax for NH4+ uptake was reducedfrom 128 to 105 µmol g–1 dry wt. h–1 in thepresence of 0.5 mol m–3 K+ and the Km for NH4+ doubledfrom 12 to 27 mmol m–3 in the presence of K+. The resultsof these K+-NH4+ experiments are interpreted as mixed-noncompetitiveinteractions. However, an enhanced efflux of K+ coupled to NH4+influx via an antiporter cannot be ruled out as contributingto the decrease in net K+ uptake. Key words: Nicotiana tabacum, K+, NH4+, Uptake interactions  相似文献   
2.
Nitrate Uptake and Assimilation following Nitrate Deprivation   总被引:2,自引:0,他引:2  
Upon first exposure to , the uptake and reduction capacities of dark-grown corn (Zea maysL.) roots are initially low, but increase markedly within 6h. The development of the accelerated uptake rate appears to be substrate ‘induced’ as is reductase (NR), the first enzyme in the assimilatory pathway. However, the ‘induction’of uptake is independent of NR induction. The effect of deprivation was studied to determine the role of endogenous on subsequent uptake and reduction. Corn roots were ‘induced’ for 24 h in 0–5 mol m–3 nutrient solution and then exposed for 0 to 32 h to -free nutrient solution. Uptake and reduction of were determined periodically by exposing sets of roots to a1 h pulse of 0.5 mol m–3 . Neither uptake (4.57 µmol root–1 h–1)nor the percentage of absorbed reduced (27%) was changed significantly (P 0.05) by exogenous deprivation. However, the estimated ‘induced’ componentof uptake decreased significantly (50% after 32 h). Concurrently, the ‘non-induced’ basal componentof uptake increased. Previously accumulated decreased from 23 to 4.5 µmol root–1 after 32 h of exogenous deprivation. Nearly equivalent quantities of endogenous were used for translocation and reduction during deprivation. During each 1 h pulse, the amounts of translocation and net efflux of to the uptake solution were similar. Net efflux of was strongly correlated (r = 0.991) to the amount of endogenous . The remaining endogenous and its rate of utilization were apparently sufficient to minimize a rapid declineor complete loss in both the ‘induced’ uptake state and the rate of in vivo assimilation. Key words: reduction, translocation, efflux, root, Zea mays L  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号