首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   3篇
  2019年   1篇
  2018年   1篇
  2015年   6篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   5篇
  2004年   1篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1997年   2篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有48条查询结果,搜索用时 281 毫秒
1.
2.
Hyperhomocysteinemia is often associated with an increase in blood pressure. However our previous study has shown that methionine supplementation induced an increase in blood pressure in Wistar-Kyoto (WKY) rats and a decrease in blood pressure in spontaneously hypertensive rats (SHR) with significant differences in plasma homocysteine (Hcy) metabolites levels. Previously liver antioxidant status has been shown to be decreased in SHR compared to WKY rats. It has been suggested that oxidative stress may predispose to a decrease in NO bioavailability and induce the flux of Hcy through the liver transsulfuration pathway. Thus the aim of this study was 1) to investigate the effect of methionine supplementation on NO-derived metabolites in plasma and urine 2) to investigate whether abnormalities in Hcy metabolism may be responsible for the discrepancies observed between WKY rats and SHR concerning blood pressure and 3) to investigate whether a methionine-enriched diet, differently modified plasma and liver antioxidant status in WKY rats an SHR. We conclude that the increase in blood pressure in WKY rats is related to high plasma cysteine levels and is not due to a decrease in NO bioavailability and that the decrease in blood pressure in SHR is associated with high plasma GSH levels after methionine supplementation. So GSH synthesis appears to be stimulated by liver oxidative stress and GSH is redistributed into blood in SHR. So the great GSH synthesis can be rationalized as an autocorrective response that leads to a decreased blood pressure in SHR.  相似文献   
3.
The effects of a vitamin C supplemented diet on blood pressure, body and liver weights, liver antioxidant status, iron and copper levels were investigated in DOCA-salt treated and untreated Sprague-Dawley (SD) male rats after 8 weeks of treatment. Vitamin C supplementation had no effect on blood pressure in SD rats but induced a significant decrease in blood pressure in DOCA-salt treated rats, the decrease being more efficient at 50 mg/kg of vitamin C than at 500 mg/kg. Hepatic lipid peroxidation and iron levels were significantly increased in DOCA-salt hypertensive rats whereas total hepatic antioxidant capacity (HAC), glutathione peroxidase (GSH-Px) and catalase (CAT) activities were decreased. Vitamin C supplementation did not affect the overall antioxidant defences of control SD rat livers. In contrast, vitamin C supplementation accentuated the DOCA-salt induced accumulation of liver iron and lipid peroxidation. This occurred without any notable aggravation in the antioxidant deficiency of vitamin C supplemented DOCA-salt treated rat livers. Our data suggest that DOCA-salt treatment induces an accumulation of iron in rat livers which is responsible for the prooxidant effect of vitamin C. The normalization of blood pressure in DOCA-salt treated rats by vitamin C supplementation appears thus independent from liver antioxidant status.  相似文献   
4.
Cells perpetually face the decision to proliferate or to stay quiescent. Here we show that upon quiescence establishment, Schizosaccharomyces pombe cells drastically rearrange both their actin and microtubule (MT) cytoskeletons and lose their polarity. Indeed, while polarity markers are lost from cell extremities, actin patches and cables are reorganized into actin bodies, which are stable actin filament–containing structures. Astonishingly, MTs are also stabilized and rearranged into a novel antiparallel bundle associated with the spindle pole body, named Q-MT bundle. We have identified proteins involved in this process and propose a molecular model for Q-MT bundle formation. Finally and importantly, we reveal that Q-MT bundle elongation is involved in polarity reestablishment upon quiescence exit and thereby the efficient return to the proliferative state. Our work demonstrates that quiescent S. pombe cells assemble specific cytoskeleton structures that improve the swiftness of the transition back to proliferation.  相似文献   
5.
6.
In this study, the effects of short-term diabetes (4 days) on rat renal glomerular cells proliferation and the potential involvement of sphingolipids in this process were investigated. Immunohistochemical analysis showed that streptozotocin (STZ)-induced diabetes promoted increased intra-glomerular hyperplasia, particularly marked for mesangial cells. This was associated with a concomitant increase in neutral ceramidase and sphingosine-kinase activities and the accumulation of the pro-proliferative sphingolipid sphingosine-1-phosphate, in glomeruli isolated from kidney cortex of STZ-treated rats. These results suggest a possible involvement of sphingolipid metabolites in the glomerular proliferative response during the early stages of diabetic nephropathy.  相似文献   
7.
The potential requirement of either the Prion or Shadoo protein for early mouse embryogenesis was recently suggested. However, the current data did not allow to precise the developmental process that was affected in the absence of both proteins and that led to the observed early lethal phenotype. In the present study, using various Prnp transgenic mouse lines and lentiviral vectors expressing shRNAs that target the Shadoo-encoding mRNA, we further demonstrate the specific requirement of at least one of these two PrP-related proteins at early developmental stages. Histological analysis reveals developmental defect of the ectoplacental cone and important hemorrhage surrounding the Prnp-knockout-Sprn-knockdown E7.5 embryos. By restricting the RNA interference to the trophoblastic cell lineages, the observed lethal phenotype could be attributed to the sole role of these proteins in this trophectoderm-derived compartment. RNAseq analysis performed on early embryos of various Prnp and Sprn genotypes indicated that the simultaneous down-regulation of these two proteins affects cell-adhesion and inflammatory pathways as well as the expression of ectoplacental-specific genes. Overall, our data provide biological clues in favor of a crucial and complementary embryonic role of the prion protein family in Eutherians and emphasizes the need to further evaluate its implication in normal and pathological human placenta biology.  相似文献   
8.
9.
The inhibition of the mammalian de novo synthesis of long-chain saturated fatty acids (LCFAs) by blocking the fatty acid synthase (FASN) enzyme activity in tumor cells that overexpress FASN can promote apoptosis, without apparent cytotoxic to non-tumor cells. The present study aimed to focus on the potent inhibitory effect of capsaicin on the fatty acid synthesis pathway inducing apoptosis of capsaicin in HepG2 cells. The use of capsaicin as a source for a new FASN inhibitor will provide new insight into its possible application as a selective anti-cancer therapy. The present findings showed that capsaicin promoted apoptosis as well as cell cycle arrest in the G0/G1 phase. The onset of apoptosis was correlated with a dissipation of mitochondrial membrane potential (ΔΨm). Apoptotic induction by capsaicin was mediated by inhibition of FASN protein expression which was accompanied by decreasing its activity on the de novo fatty acid synthesis. The expression of FASN was higher in HepG2 cells than in normal hepatocytes that were resistant to undergoing apoptosis following capsaicin administration. Moreover, the inhibitory effect of capsaicin on FASN expression and activity was found to be mediated by an increase of intracellular reactive oxygen species (ROS) generation. Treatment of HepG2 cells with capsaicin failed to alter ACC and ACLY protein expression, suggesting ACC and ACLY might not be the specific targets of capsaicin to induce apoptosis. An accumulation of malonyl-CoA level following FASN inhibition represented a major cause of mitochondrial-dependent apoptotic induction instead of deprivation of fatty acid per se. Here, we also obtained similar results with C75 that exhibited apoptosis induction by reducing the levels of fatty acid without any change in the abundance of FASN expression along with increasing ROS production. Collectively, our results provide novel evidence that capsaicin exhibits a potent anti-cancer property by targeting FASN protein in HepG2 cells.  相似文献   
10.
The number of polymorphisms identified with next‐generation sequencing approaches depends directly on the sequencing depth and therefore on the experimental cost. Although higher levels of depth ensure more sensitive and more specific SNP calls, economic constraints limit the increase of depth for whole‐genome resequencing (WGS). For this reason, capture resequencing is used for studies focusing on only some specific regions of the genome. However, several biases in capture resequencing are known to have a negative impact on the sensitivity of SNP detection. Within this framework, the aim of this study was to compare the accuracy of WGS and capture resequencing on SNP detection and genotype calling, which differ in terms of both sequencing depth and biases. Indeed, we have evaluated the SNP calling and genotyping accuracy in a WGS dataset (13X) and in a capture resequencing dataset (87X) performed on 11 individuals. The percentage of SNPs not identified due to a sevenfold sequencing depth decrease was estimated at 7.8% using a down‐sampling procedure on the capture sequencing dataset. A comparison of the 87X capture sequencing dataset with the WGS dataset revealed that capture‐related biases were leading with the loss of 5.2% of SNPs detected with WGS. Nevertheless, when considering the SNPs detected by both approaches, capture sequencing appears to achieve far better SNP genotyping, with about 4.4% of the WGS genotypes that can be considered as erroneous and even 10% focusing on heterozygous genotypes. In conclusion, WGS and capture deep sequencing can be considered equivalent strategies for SNP detection, as the rate of SNPs not identified because of a low sequencing depth in the former is quite similar to SNPs missed because of method biases of the latter. On the other hand, capture deep sequencing clearly appears more adapted for studies requiring great accuracy in genotyping.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号