首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3126篇
  免费   210篇
  国内免费   137篇
  3473篇
  2024年   14篇
  2023年   65篇
  2022年   144篇
  2021年   247篇
  2020年   169篇
  2019年   212篇
  2018年   193篇
  2017年   134篇
  2016年   198篇
  2015年   256篇
  2014年   336篇
  2013年   331篇
  2012年   317篇
  2011年   279篇
  2010年   138篇
  2009年   110篇
  2008年   105篇
  2007年   80篇
  2006年   43篇
  2005年   35篇
  2004年   21篇
  2003年   9篇
  2002年   6篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1989年   2篇
  1986年   1篇
  1981年   2篇
  1977年   3篇
  1975年   2篇
  1959年   2篇
排序方式: 共有3473条查询结果,搜索用时 46 毫秒
1.
Long noncoding RNAs (lncRNAs) play important roles in the spatial and temporal regulation of muscle development and regeneration. Nevertheless, the determination of their biological functions and mechanisms underlying muscle regeneration remains challenging. Here, we identified a lncRNA named lncMREF (lncRNA muscle regeneration enhancement factor) as a conserved positive regulator of muscle regeneration among mice, pigs and humans. Functional studies demonstrated that lncMREF, which is mainly expressed in differentiated muscle satellite cells, promotes myogenic differentiation and muscle regeneration. Mechanistically, lncMREF interacts with Smarca5 to promote chromatin accessibility when muscle satellite cells are activated and start to differentiate, thereby facilitating genomic binding of p300/CBP/H3K27ac to upregulate the expression of myogenic regulators, such as MyoD and cell differentiation. Our results unravel a novel temporal-specific epigenetic regulation during muscle regeneration and reveal that lncMREF/Smarca5-mediated epigenetic programming is responsible for muscle cell differentiation, which provides new insights into the regulatory mechanism of muscle regeneration.  相似文献   
2.
Cardiac fibrosis is one of the common pathological processes in many cardiovascular diseases characterized by excessive extracellular matrix deposition. SerpinE2 is a kind of protein that inhibits peptidase in extracellular matrix and up-regulated tremendously in mouse model of cardiac fibrosis induced by pressure-overloaded via transverse aortic constriction (TAC) surgery. However, its effect on cardiac fibroblasts (CFs), collagen secretion and the underlying mechanism remains unclear. In this study, DyLight® 488 green fluorescent dye or His-tagged proteins were used to label the exogenous serpinE2 protein. It was showed that extracellular serpinE2 translocated into CFs by low-density lipoprotein receptor-related protein 1 (LRP1) and urokinase plasminogen activator receptor (uPAR) of cell membrane through endocytosis. Knockdown of LRP1 or uPAR reduced the level of serpinE2 in CFs and down-regulated the collagen expression. Inhibition of the endocytosis of serpinE2 could inhibit ERK1/2 and β-catenin signaling pathways and subsequently attenuated collagen secretion. Knockdown of serpinE2 attenuates cardiac fibrosis in TAC mouse. We conclude that serpinE2 could be translocated into cardiac fibroblasts due to endocytosis through directly interact with the membrane protein LRP1 and uPAR, and this process activated the ERK1/2, β-catenin signaling pathways, consequently promoting collagen production.  相似文献   
3.
Zhao Y  Lv M  Lin H  Hong Y  Yang F  Sun Y  Guo Y  Cui Y  Li S  Gao Y 《IUBMB life》2012,64(2):194-202
It has been known that Rho-associated protein kinase (ROCK) signaling regulates the migration of vascular smooth muscle cells (VSMCs). However, the isoform-specific roles of ROCK and its underlying mechanism in VSMC migration are not well understood. The current study thus aimed to investigate the roles of ROCK1/2 and their relationship to the MAPK signaling pathway in platelet-derived growth factor (PDGF)-induced rat aorta VSMC migration by manipulating ROCK gene expression. The results revealed that ROCK1 small interfering ribonucleic acid (siRNA) rather than ROCK2 siRNA decreased PDGF-BB-generated VSMC migration, and upregulation of ROCK1 expression via transfection of constructed pEGFP-C1/ROCK1 plasmid further increased the migration of PDGF-BB-treated VSMCs. In PDGF-treated VSMCs, ROCK1 siRNA did not affect the phosphorylation levels of ERK and p38 in the cytoplasm, but decreased the level of ERK phosphorylation in the nucleus. These findings demonstrate that activated ROCK1 can promote VSMC migration through facilitating phosphorylation and nuclear translocation of ERK protein.  相似文献   
4.
Liu HD  Yan Y  Cao XF  Tan PZ  Wen HX  Lv CM  Li XM  Liu GY 《生理学报》2010,62(6):524-528
The aim of the present study is to investigate the expression of a novel estrogen receptor, G protein-coupled receptor 30 (GPR30) and its correlation with matrix metalloproteinases-9 (MMP-9) in epithelial ovarian cancer (EOC). Ovary tissues were obtained from 39 female patients, including 30 cases of EOC and 9 cases of benign ovarian tumor. Four normal ovary tissues were used as control. Immunohistochemical staining was used to detect the expressions of GPR30 and MMP-9. Chi square test, Fisher's exact test and Spearman's rank correlation analysis were used for statistical analysis. The results showed that GPR30 overexpression rate in EOC cases was significantly higher than those in benign ovarian tumor and normal ovary cases. Whereas MMP-9 overexpression rate in EOC cases was significantly higher than that in normal ovary cases, without any difference to that in benign ovarian tumor cases. To demonstrate the relationship between GPR30 and clinicopathological variables of EOC, we further analyzed the pathology type, FIGO stage and age of patients sampled in our study. The analysis showed there were significant differences of GPR30 overexpression rate among various pathology types and different FIGO stages (P<0.05), and no significant difference of both GPR30 and MMP-9 among three age groups (P>0.05). Moreover, GPR30 expression was positively correlated with MMP-9 (r(s)=1.000, P=0.002). These results suggest that GPR30 may be involved in the invasion and metastasis of EOC, being a potential index of EOC early diagnosis and malignancy grade prediction.  相似文献   
5.
An Y  Chen L  Sun S  Lv A  Wu W 《New biotechnology》2011,28(4):320-325
Here we describe a robust method, termed QuikChange shuffling, for efficient site-directed mutagenesis and random recombination of homologous genes. The homologous genes are fragmented, and the random fragments are reassembled in a self-priming polymerase reaction to obtain chimeric genes. The product is then mixed with linearized vector and two pairs of complementary mutagenic primers, followed by assembly of the chimeric genes and linearized vector through QuikChange-like amplification to introduce recombinant plasmids with a site-directed mutation. The method, which can yield 100% chimeric genes after library construction, is more convenient and efficient than current DNA shuffling methods.  相似文献   
6.
Li C  Li Y  Xu J  Lv J  Ma Y  Shao T  Gong B  Tan R  Xiao Y  Li X 《Gene》2011,489(2):119-129
Detection of the synergetic effects between variants, such as single-nucleotide polymorphisms (SNPs), is crucial for understanding the genetic characters of complex diseases. Here, we proposed a two-step approach to detect differentially inherited SNP modules (synergetic SNP units) from a SNP network. First, SNP-SNP interactions are identified based on prior biological knowledge, such as their adjacency on the chromosome or degree of relatedness between the functional relationships of their genes. These interactions form SNP networks. Second, disease-risk SNP modules (or sub-networks) are prioritised by their differentially inherited properties in IBD (Identity by Descent) profiles of affected and unaffected sibpairs. The search process is driven by the disease information and follows the structure of a SNP network. Simulation studies have indicated that this approach achieves high accuracy and a low false-positive rate in the identification of known disease-susceptible SNPs. Applying this method to an alcoholism dataset, we found that flexible patterns of susceptible SNP combinations do play a role in complex diseases, and some known genes were detected through these risk SNP modules. One example is GRM7, a known alcoholism gene successfully detected by a SNP module comprised of two SNPs, but neither of the two SNPs was significantly associated with the disease in single-locus analysis. These identified genes are also enriched in some pathways associated with alcoholism, including the calcium signalling pathway, axon guidance and neuroactive ligand-receptor interaction. The integration of network biology and genetic analysis provides putative functional bridges between genetic variants and candidate genes or pathways, thereby providing new insight into the aetiology of complex diseases.  相似文献   
7.
8.
Protein phosphorylation is one of the most common post-translational modification processes that play an essential role in regulating protein functionality.The Helicoverpa armigera single nucleopolyhedrovirus (HearNPv) orf2-encoded nucleocapsid protein HA2 participates in orchestration of virus-induced actin polymerization through its WCA domain,in which phosphorylation status are supposed to be critical in respect to actin polymerization.In the present study,two putative phosphorylation sites (232Thr and 250Ser) and a highly conserved Serine (245Ser) on the WCA domain of HA2 were mutated,and their phenotypes were characterized by reintroducing the mutated HA2 into the HearNPV genome.Viral infectivity assays demonstrated that only the recombinant HearNPV bearing HA2 mutation at 245Ser can produce infectious virions,both 232Tbr and 250Ser mutations were lethal to the virus.However,actin polymerization assay demonstrated that all the three viruses bearing HA2 mutations were still capable of initiating actin polymerization in the host nucleus,which indicated the putative phosphorylation sites on HA2 may contribute to HearNPV replication through another unidentified pathway.  相似文献   
9.
Li X  Wang Q  Zheng Y  Lv S  Ning S  Sun J  Huang T  Zheng Q  Ren H  Xu J  Wang X  Li Y 《Nucleic acids research》2011,39(22):e153
The identification of human cancer-related microRNAs (miRNAs) is important for cancer biology research. Although several identification methods have achieved remarkable success, they have overlooked the functional information associated with miRNAs. We present a computational framework that can be used to prioritize human cancer miRNAs by measuring the association between cancer and miRNAs based on the functional consistency score (FCS) of the miRNA target genes and the cancer-related genes. This approach proved successful in identifying the validated cancer miRNAs for 11 common human cancers with area under ROC curve (AUC) ranging from 71.15% to 96.36%. The FCS method had a significant advantage over miRNA differential expression analysis when identifying cancer-related miRNAs with a fine regulatory mechanism, such as miR-27a in colorectal cancer. Furthermore, a case study examining thyroid cancer showed that the FCS method can uncover novel cancer-related miRNAs such as miR-27a/b, which were showed significantly upregulated in thyroid cancer samples by qRT-PCR analysis. Our method can be used on a web-based server, CMP (cancer miRNA prioritization) and is freely accessible at http://bioinfo.hrbmu.edu.cn/CMP. This time- and cost-effective computational framework can be a valuable complement to experimental studies and can assist with future studies of miRNA involvement in the pathogenesis of cancers.  相似文献   
10.
A high-quality reference genome is necessary to determine the molecular mechanisms underlying important biological phenomena; therefore, in the present study, a chromosome-level genome assembly of the Chinese shrimp Fenneropenaeus chinensis was performed. Muscle of a male shrimp was sequenced using PacBio platform, and assembled by Hi-C technology. The assembled F. chinensis genome was 1.47 Gb with contig N50 of 472.84 Kb, including 57.73% repetitive sequences, and was anchored to 43 pseudochromosomes, with scaffold N50 of 36.87 Mb. In total, 25,026 protein-coding genes were predicted. The genome size of F. chinensis showed significant contraction in comparison with that of other penaeid species, which is likely related to migration observed in this species. However, the F. chinensis genome included several expanded gene families related to cellular processes and metabolic processes, and the contracted gene families were associated with virus infection process. The findings signify the adaptation of F. chinensis to the selection pressure of migration and cold environment. Furthermore, the selection signature analysis identified genes associated with metabolism, phototransduction, and nervous system in cultured shrimps when compared with wild population, indicating targeted, artificial selection of growth, vision, and behavior during domestication. The construction of the genome of F. chinensis provided valuable information for the further genetic mechanism analysis of important biological processes, and will facilitate the research of genetic changes during evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号