首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2003年   2篇
  2002年   1篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
An improved method for fatty acids analysis with optimum recovery of highly polyunsaturated fatty acids methyl esters in biological systems is presented. The method is based on transesterification of phospholipid and triacylglycerols to fatty acid methyl esters using a commercially available reagent, Methyl-Prep II. Without proper precautions, as much as 50% of n-butylated hydroxytoluene (BHT) added to prevent oxidation of polyunsaturated fatty acids, could be methylated during the transesterification step. Methylated BHT elutes close to 14:0 (myristic acid) and no longer functions as an antioxidant, but the modified conditions virtually eliminate the methylation of BHT. Sample extraction and methylation was completed in 30 min at room temperature. A chelator (diethylenetriamine-pentaacetic acid; DTPA) is also added to prevent peroxidation of metal catalyzed free radical chain reactions. The standard deviations of the major fatty acids from multiple human plasma samples prepared on different days were less than 5%. The recovery of arachidonic acid, 20:4, from plasma was improved using the new method, and the recovery for docosahexaenoic acid, 22:6, spiked to human plasma was found to be 99%.  相似文献   
2.
Absorbance Changes of Carotenoids in Different Solvents   总被引:1,自引:0,他引:1  
Carotenoids are typically measured in tissues with the high performance liquid chromatography (HPLC) and quantitation is usually done by calibrating with stock solutions in solvents. Four carotenoids including lutein, zeaxanthin, lycopene and β-carotene were dissolved in hexane and methanol respectively, and their absorbance characteristeris were compared. Lutein shows absorbance spectra that are almost independent of solvents at various concentrations. Spectra of zeaxanthin, lycopene and β-carotene were found to be more solvent-dependent. The absorbance of zeaxanthin at λmax is about 2 times larger in methanol than in hexane at the higher concentrations, and increased non-linearly with increasing concentration in hexane. The absorbance of lycopene at λmax in hexane is 4 fold larger than in methanol, but the absorbance of the methanol sample can be recovered by re-extracting this sample in hexane. The absorbance of β-carotene in hexane is larger than in methanol, and increased linearly with increasing concentration. But β-carotene showed a non-linear concentration effect in methanol. There are very small variations in λmax for all four carotenoids between hexane and methanol, due to differences in molar extinction coefficients. The non-linear concentration effects for these carotenoids are probably due to differences in solubility leading to the formation of microcrystals. Thus, care should be taken with quantitation of tissue carotenoid values, when they depend on measurement of concentrations in stock solutions.  相似文献   
3.
A method based on liquid chromatography (LC) in combination with mass spectrometry (MS) for the analysis of alachlor (ALA) and its metabolites, 2-chloro-N-[2,6-diethylphenyl]acetamide (CDEPA) and 2,6-diethylaniline (DEA), in rat plasma and urine has been developed. 13C-labeled ALA was used as the internal standard for quantitation. The analyte in plasma or urine was isolated using a Waters Oasis HLB extraction plate. The mass spectrometer was operated in the ESI MS-SIM mode with a programming procedure. The retention times for ALA, CDEPA and DEA were 1.84, 3.11 and 4.12 min, respectively. The limits of quantification (LOQ) for ALA, CDEPA and DEA were 2.3, 0.8 and 0.8 ng per injection, respectively. The linear fit of analyte to mass response had an R2 of 0.99. Reproducibility of the sample handling and LC-MS analysis had a RSD of < or = 10%. The average recoveries for these analytes in rat plasma were better than 90%. Similar results were obtained with rat urine.  相似文献   
4.
The neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been shown to reversibly inhibit the activity of acetylcholinesterase. The inactivation of the enzyme was detected by monitoring the accumulation of yellow color produced from the reaction between thiocholine and dithiobisnitrobenzoate ion. The kinetic parameter, K m for the substrate (acetylthiocholine), was found to be 0.216 mM and K i for MPTP inactivation of acetylcholinesterase was found to be 2.14 mM. The inactivation of enzyme by MPTP was found to be dose-dependent. It was found that MPTP is neither a substrate of AChE nor the time-dependent inactivator. The studies of reaction kinetics indicate the inactivation of AChE to be a linear mixed-type inhibition. The dilution assays indicate that MPTP is a reversible inhibitor for AChE. These data suggest that once MPTP enters the basal ganglia of the brain, it can inactivate the acetylcholinesterase enzyme and thereby increase the acetylcholine level in the basal ganglia of brain, leading to potential cell dysfunction. It appears that the nigrostriatal toxicity by MPTP leading to Parkinson's disease-like syndrome may, in part, be mediated via the acetylcholinesterase inactivation.  相似文献   
5.
Plant cells contain lipid-transfer proteins (LTPs) able to transfer phospholipids between membranes in vitro. Plant LTPs share in common structural and functional features. Recent structural studies carried out by NMR and X-ray crystallography on an LTP isolated from maize seeds have showed that this protein involves four helices packed against a C-terminal region and stabilized by four disulfide bridges. A most striking feature of this structure is the existence of an internal hydrophobic cavity running through the whole molecule and able to accomodate acyl chains. It was thus of interest to study the ability of maize LTP to bind hydrophobic ligands such as acyl chains or lysophosphatidylcholine and to determine the effect of this binding on phospholipid transfer. The binding abilities of maize LTP, presented in this paper, are discussed and compared to those of lipid-binding proteins from animal tissues.  相似文献   
6.
Chlorogenic acid (CGA) is considered to act as an antioxidant. However, the inhibitory effects of CGA on specific radical species are not well understood. Electron spin resonance (ESR) in combination with spin trapping techniques was utilized to detect free radicals. 5,5-Dimethyl-1-pyrroline-N-oxide (DMPO) was used as a spin trapping reagent while the Fenton reaction was used as a source of hydroxyl radical (·OH). We found that CGA scavenges ·OH in a dose-dependent manner. The kinetic parameters, IC50 and Vmax, for CGA scavenging of ·OH were 110 and 1.27 M/sec, respectively. The rate constant for the scavenging of ·OH by CGA was 7.73 × 109 M–1 sec–1. Our studies suggest that the antioxidant properties of CGA may involve a direct scavenging effect of CGA on ·OH.  相似文献   
7.
A simplified method for analysis of the antioxidants carotenoids and vitamin E in human plasma is presented. The method is based on high-performance liquid chromatography with a single column, a flow-rate gradient, and detection at 450 and 290 nm with a diode array detector. It gives good separation of the vitamin E isomers and the major carotenoids in plasma, with a 25 min analysis time. It was found that hydrolysis of triglycerides and cholesterol esters is required to obtain good recovery of non-polar carotenoids such as lycopene, α-carotene and β-carotene. Two methods were used for hydrolysis of the non-polar lipids, saponification with ethanolic KOH and digestion with an enzyme mixture of lipase and cholesterol esterase. It was found that the enzymatic digestion gave the best recoveries, better than 94% for all of the antioxidants, and preserved several carotenoids. A plasma pool is used for day to day calibration of the method, which eliminates the need for stock solutions of carotenoids that are stable for only a month due to oxidative breakdown and their tendency to crystallize when stored at −20°C in organic solvents.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号