首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   11篇
  2022年   1篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2008年   2篇
  2006年   2篇
  2005年   1篇
  2003年   3篇
  2001年   1篇
  1999年   4篇
  1998年   2篇
  1996年   2篇
  1991年   2篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
  1983年   2篇
  1980年   1篇
  1979年   4篇
  1978年   5篇
  1977年   3篇
  1976年   3篇
  1975年   1篇
  1974年   4篇
  1973年   9篇
  1969年   2篇
  1968年   1篇
  1963年   1篇
排序方式: 共有69条查询结果,搜索用时 15 毫秒
1.
2.
The invasively growing and metasizing Lewis lung carcinoma consistently contained urokinase-type plasminogen activator (u-PA) enzyme activity. When investigated immunocytochemically with antibodies against u-PA, different parts of individual tumors showed a pronounced heterogeneity in staining intensity. Strong staining was found in areas with invasive growth and degradation of surrounding normal tissue, while other areas were completely devoid of staining. Immunoreactivity occurred both with a perinuclear cytoplasmic localization in tumor cells and associated with apparently extracellular material. SDS PAGE of tumor extracts, under both reducing and nonreducing conditions, followed by immunoblotting, showed only one immunocytochemically stainable band with an electrophoretic mobility corresponding to that of purified proenzyme to u-PA, while no two-chain u-PA was detected. This indicates that the major part of the activator in Lewis lung carcinoma is present as one-chain pro-u-PA.  相似文献   
3.
4.
5.
Summary The characteristics of recombination of several petite (rho -) mutants of S. cerevisiae that retain the -influenced region of the mitochondrial genome, identified by the markers cap1-r, ery1-r and tsr1, are described. The petites were derived from an grande (rho +) strain and those petites which retain all three markers show recombination properties similar to those of the - parental strain. However, other rho - mutants that retain the cap1 and ery1 loci but have lost the tsr1 locus, which is located between cap1 and ery1, show markedly different properties of mitochondrial transmission and recombination, consistent with the presence of + alleles. The association of an internal deletion between the cap1 and ery1 loci with a change in phenotype provides additional evidence for the location of between these two loci.Although the petites deleted for the tsr1 locus exhibited the recombination properties of + strains, it was not possible to transmit this characteristic to rho + recombinant cells. Experiments on the kinetics of elimination by ethidium bromide of the cap1 and eryl markers from the petites and measurements of the buoyant densities of their mtDNA species did not indicate major changes (such as selective sequence repetition) in the sequences of the mtDNAs. The possible nature of the changes in the mtDNAs of these petites is discussed in light of recent studies on the physical nature of the alleles.  相似文献   
6.
Summary An enrichment procedure which facilitates the isolation of conditional respiratory-deficient mutants of Saccharomyces cerevisiae is reported. Detailed genetic analysis of one mutant which exhibits a respiratory deficient phenotype at low temperature (18°C) is also presented. The phenotype is due to a single lesion at a new locus, tsr1, located on the mitochondrial DNA. By analysis of locus retention patterns in a set of physically characterized petite strains, the tsr1 mutation has been mapped within the segment 0–5 map units on the physical map of the yeast mitochondrial genome. This segment of the mitochondrial DNA also contains the cap1 and ery1 loci and the cistron for the mitochondrial 21S rRNA. Studies of the frequencies of co-retention of markers in petite populations, and of the frequencies of recombination of markers in non-polar crosses (+ × +), demonstrate linkage of the tsr1 locus to both the cap1 and ery1 loci. The degree of linkage indicates that tsr1 is closer to the ery1 locus. Comparison of pairwise recombination frequencies for these three markers indicate the order cap1-tsr1-ery1. The tsr1 locus lies within the segment of the mitochondrial genome which is influenced by the polarity locus , and analysis of transmission and recombination frequencies and polarities in a polar (+ × -) cross show that the behaviour of the tsr1 locus is similar to that of ery1. However striking features of this cross are that the recombination frequency between tsr1 and ery1 is comparable to that observed in non-polar crosses, and that the polarity for recombination between tsr1 and cap1 or ery1 is extremely low.  相似文献   
7.
8.
Two independently isolated oligomycin resistant mutants of Saccharomyces cerevisiae have been studied. The oligomycin resistance is conferred in each case by a single mutation at an oliA locus. In both strains the proteolipid subunit of the mitochondrial ATPase (subunit 9) shows an apparent increase in molecular weight as judged by its mobility in sodium dodecyl sulphate polyacrylamide gel electrophoresis. Variable effects are seen on other subunits. These results suggest that oliA loci may play some role in the determination of proteolipid ATPase subunit.  相似文献   
9.
10.
Our goal was to describe in more detail the evolutionary history of Gamma and two derived lineages (P.1.1 and P.1.2), which are part of the arms race that SARS-CoV-2 wages with its host. A total of 4,977 sequences of the Gamma strain of SARS-CoV-2 from Brazil were analyzed. We detected 194 sites under positive selection in 12 genes/ORFs: Spike, N, M, E, ORF1a, ORF1b, ORF3, ORF6, ORF7a, ORF7b, ORF8, and ORF10. Some diagnostic sites for Gamma lacked a signature of positive selection in our study, but these were not fixed, apparently escaping the action of purifying selection. Our network analyses revealed branches leading to expanding haplotypes with sites under selection only detected when P.1.1 and P.1.2 were considered. The P.1.2 exclusive haplotype H_5 originated from a non-synonymous mutational step (H3509Y) in H_1 of ORF1a. The selected allele, 3509Y, represents an adaptive novelty involving ORF1a of P.1. Finally, we discuss how phenomena such as epistasis and antagonistic pleiotropy could limit the emergence of new alleles (and combinations thereof) in SARS-COV-2 lineages, maintaining infectivity in humans, while providing rapid response capabilities to face the arms race triggered by host immuneresponses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号