首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2332篇
  免费   217篇
  国内免费   2篇
  2551篇
  2024年   8篇
  2023年   30篇
  2022年   49篇
  2021年   114篇
  2020年   65篇
  2019年   76篇
  2018年   80篇
  2017年   60篇
  2016年   114篇
  2015年   155篇
  2014年   154篇
  2013年   173篇
  2012年   205篇
  2011年   175篇
  2010年   115篇
  2009年   103篇
  2008年   130篇
  2007年   115篇
  2006年   103篇
  2005年   113篇
  2004年   79篇
  2003年   52篇
  2002年   53篇
  2001年   23篇
  2000年   7篇
  1999年   11篇
  1998年   13篇
  1997年   7篇
  1996年   7篇
  1995年   5篇
  1994年   6篇
  1993年   7篇
  1992年   10篇
  1991年   7篇
  1990年   8篇
  1989年   9篇
  1988年   13篇
  1987年   5篇
  1986年   7篇
  1985年   5篇
  1982年   3篇
  1980年   5篇
  1978年   3篇
  1971年   5篇
  1968年   4篇
  1963年   4篇
  1950年   3篇
  1938年   2篇
  1933年   2篇
  1919年   2篇
排序方式: 共有2551条查询结果,搜索用时 15 毫秒
1.
Cord-forming fungi form extensive networks that continuously adapt to maintain an efficient transport system. As osmotically driven water uptake is often distal from the tips, and aqueous fluids are incompressible, we propose that growth induces mass flows across the mycelium, whether or not there are intrahyphal concentration gradients. We imaged the temporal evolution of networks formed by Phanerochaete velutina, and at each stage calculated the unique set of currents that account for the observed changes in cord volume, while minimizing the work required to overcome viscous drag. Predicted speeds were in reasonable agreement with experimental data, and the pressure gradients needed to produce these flows are small. Furthermore, cords that were predicted to carry fast-moving or large currents were significantly more likely to increase in size than cords with slow-moving or small currents. The incompressibility of the fluids within fungi means there is a rapid global response to local fluid movements. Hence velocity of fluid flow is a local signal that conveys quasi-global information about the role of a cord within the mycelium. We suggest that fluid incompressibility and the coupling of growth and mass flow are critical physical features that enable the development of efficient, adaptive biological transport networks.  相似文献   
2.
Enterochelin synthetase activity is controlled by both repression and feed-back inhibition mechanisms. Inclusion of iron in growth media results in synthesis of all four (D, E, F and G) components of enterochelin synthetase being repressed. The specific inhibition of L-serine activation (partial reaction catalyzed by the F component) by the end products, ferric-enterochelin and 2,3-dihydroxybenzoylserine, is shown to inhibit overall enterochelin synthetase activity.  相似文献   
3.
4.
5.
6.
Plasma membrane phosphatidic acid phosphohydrolase (PAPH) plays an important role in signal transduction by converting phosphatidic acid to diacylglycerol. PAPH-2, a Mg2+-independent, detergent-dependent enzyme involved in cellular signal transduction, is reportedly absent from the plasma membranes of neutrophilic leukocytes, a cell that responds to metabolic stimulation with abundant phospholipase -dependent diacylglycerol generation. The present study was designed to resolve this discrepancy, focusing on the influence of cellular disruption techniques, detergenta availability and cation sensitivity on the apparent distribution of PAPH in neutrophil sub-cellular fractions. The results clearly indicate the presence of two distinct types of PAPH within the particulate and cytosolic fractions of disrupted cells. Unlike the cytosolic enzyme, the particulate enzyme was not potentiated by magnesium and was strongly detergent-dependent. The soluble and particulate enzymes displayed dissimilar pH profiles. Separation of neutrophil particulate material into fractions rich in plasma membranes, specific granules and azurophilic granules by high speed discontinuous density gradient centrifugation revealed that the majority of the particulate activity was confined to plasma membranes. This activity was not inhibited by pretreatment with n-ethyl-maleimide in concentrations as high as 25 mM. PAPH activity recovered in the cytosolic fraction of disrupted neutrophils was almost completely inhibited by 5.0 mM n-ethylmaleimide. We conclude that resting neutrophils possess n-ethylmaleimide-resistant PAPH (type 2) within their plasma membranes. This enzyme may markedly influence the kinetics of cell activation by metabolizing second messengers generated as a result of activation of plasma membrane phospholipase D.  相似文献   
7.
Summary Using a series of genetic parameters, attempts have been made for more than two decades to establish the close kinship of human (Homo sapiens) with chimpanzee (Pan troglodytes). Molecular and cytogenetic data presently suggest that the two species are closely related. The recent isolation of a human telomeric probe (P5097-B.5) has prompted us to cross hybridize it to chimpanzee chromosomes in order to explore convergence and/or divergence of the telomeric repeat sequences (TTAGGG)n. On hybridization, the human probe bound to both ends (telomeres) of chimpanzee chromosomes, suggesting a concerted evolution of tandemly repeated short simple sequences (TTAGGG)n. Even the terminal heterochromatin of chimpanzee chromosomes was found to be endowed with telomeric repeats, suggesting that evolution of heterochromatin and capping with tandemly repeated short sequences are highly complex phenomena.  相似文献   
8.
Theory and analyses of fisheries data sets indicate that harvesting can alter population structure and destabilise non-linear processes, which increases population fluctuations. We conducted a factorial experiment on the population dynamics of Daphnia magna in relation to size-selective harvesting and stochasticity of food supply. Harvesting and stochasticity treatments both increased population fluctuations. Timeseries analysis indicated that fluctuations in control populations were non-linear, and non-linearity increased substantially in response to harvesting. Both harvesting and stochasticity induced population juvenescence, but harvesting did so via the depletion of adults, whereas stochasticity increased the abundance of juveniles. A fitted fisheries model indicated that harvesting shifted populations towards higher reproductive rates and larger-magnitude damped oscillations that amplify demographic noise. These findings provide experimental evidence that harvesting increases the non-linearity of population fluctuations and that both harvesting and stochasticity increase population variability and juvenescence.  相似文献   
9.
The influence of food and water intake on renal function was assessed by comparisons between the hyperphagic Zucker obese rat and its lean littermate, which demonstrates nocturnal dominance in activity. Serum creatinine and cortisol levels, creatine kinase activities, creatinine and urine clearances, and sodium and potassium excretion rates were measured over a 24-hour period in both lean and obese rats (n = 24 each). Six rats in each group were studied every 8 h to permit characterization over a 12-hour light/dark cycle at 2-hour intervals. Urine and creatinine clearances were increased in lean rats during the dark phase coincident with onset of eating. Similarly, renal sodium and potassium excretion rates were markedly increased during the dark cycle, despite relatively constant serum potassium and sodium levels over the 24-hour period. In contrast, no circadian patterns in urine and creatinine clearances were found in the obese rat, which exhibits continuous feeding habits throughout the 24-hour period. Moreover, renal electrolyte excretion in the obese rat was modestly increased during the dark cycle, unlike the significant differences over time observed in lean rats. Serum creatinine levels were increased during the dark cycle in both rat groups. Creatine kinase activity, a measure of ambulatory activity, was constant in lean rats during the study period. Although creatine kinase activity was increased in obese rats during the dark cycle, no correlations with renal functional parameters were found. These results indicate that differences in food and water intake are significant determinants in diurnal cyclic changes in renal function.  相似文献   
10.
Microaerophilic pathogens such as Giardia lamblia, Entamoeba histolytica, and Trichomonas vaginalis have robust oxygen consumption systems to detoxify oxygen and maintain intracellular redox balance. This oxygen consumption results from H2O-forming NADH oxidase (NOX) activity of two distinct flavin-containing systems: H2O-forming NOXes and multicomponent flavodiiron proteins (FDPs). Neither system is membrane bound, and both recycle NADH into oxidized NAD+ while simultaneously removing O2 from the local environment. However, little is known about the specific contributions of these systems in T. vaginalis. In this study, we use bioinformatics and biochemical analyses to show that T. vaginalis lacks a NOX–like enzyme and instead harbors three paralogous genes (FDPF1–3), each encoding a natural fusion product between the N-terminal FDP, central rubredoxin (Rb), and C-terminal NADH:Rb oxidoreductase domains. Unlike a “stand-alone” FDP that lacks Rb and oxidoreductase domains, this natural fusion protein with fully populated flavin redox centers directly accepts reducing equivalents of NADH to catalyze the four-electron reduction of oxygen to water within a single polypeptide with an extremely high turnover. Furthermore, using single-particle cryo-EM, we present structural insights into the spatial organization of the FDP core within this multidomain fusion protein. Together, these results contribute to our understanding of systems that allow protozoan parasites to maintain optimal redox balance and survive transient exposure to oxic conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号