首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2019年   1篇
  2013年   1篇
排序方式: 共有2条查询结果,搜索用时 19 毫秒
1
1.

Background

It is now widely recognized that radiotherapy of thoracic and chest wall tumors increases the long-term risk of cardiovascular damage although the underlying mechanisms are not fully elucidated. There is increasing evidence that microvascular damage is involved. Endoglin, an accessory receptor for TGF-β1, is highly expressed in damaged endothelial cells and may play a crucial role in cell proliferation and revascularization of damaged heart tissue. We have therefore specifically examined the role of endoglin in microvascular damage and repair in the irradiated heart.

Materials & Methods

A single dose of 16 Gy was delivered to the heart of adult Eng+/+ or Eng+/− mice and damage was evaluated at 4, 20 and 40 weeks, relative to age-matched controls. Gated single photon emission computed tomography (gSPECT) was used to measure cardiac geometry and function, and related to histo-morphology, microvascular damage (detected using immuno- and enzyme-histochemistry) and gene expression (detected by microarray and real time PCR).

Results

Genes categorized according to known inflammatory and immunological related disease were less prominently regulated in irradiated Eng+/− mice compared to Eng+/+ littermates. Fibrosis related genes, TGF-β1, ALK 5 and PDGF, were only upregulated in Eng+/+ mice during the early phase of radiation-induced cardiac damage (4 weeks). In addition, only the Eng+/+ mice showed significant upregulation of collagen deposition in the early fibrotic phase (20 weeks) after irradiation. Despite these differences in gene expression, there was no reduction in inflammatory invasion (CD45+cells) of irradiated Eng+/− hearts. Microvascular damage (microvascular density, alkaline phosphatase and von-Willebrand-Factor expression) was also similar in both strains.

Conclusion

Eng+/− mice displayed impaired early inflammatory and fibrotic responses to high dose irradiation compared to Eng+/+ littermates. This did not result in significant differences in microvascular damage or cardiac function between the strains.  相似文献   
2.

Methamphetamine (meth) use is often comorbid with anxiety disorders, with both conditions predominant during adolescence. Conditioned fear extinction is the most widely used model to study the fear learning and regulation that are relevant for anxiety disorders. The present study investigates how meth binge injections or meth self-administration affect subsequent fear conditioning, extinction and retrieval in adult and adolescent rats. In experiment 1, postnatal day 35 (P35—adolescent) and P70 (adult) rats were intraperitoneally injected with increasing doses of meth across 9 days. At P50 or P85, they underwent fear conditioning followed by extinction and test. In experiments 2a–c, P35 or P70 rats self-administered meth for 11 days then received fear conditioning at P50 or P85, followed by extinction and test. We observed that meth binge exposure caused a significant disruption of extinction retrieval in adult but not adolescent rats. Interestingly, meth self-administration in adolescence or adulthood disrupted acquisition of conditioned freezing in adulthood. Meth self-administration in adolescence did not affect conditioned freezing in adolescence. These results suggest that intraperitoneal injections of high doses of meth and meth self-administration have dissociated effects on fear conditioning and extinction during adulthood, while adolescent fear conditioning and extinction are unaffected.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号